精英家教网 > 高中数学 > 题目详情

【题目】给出下列命题:

命题b2-4ac<0,则方程ax2+bx+c=0(a≠0)没有实根的否命题;

命题△ ABC,AB=BC=CA,△ ABC为等边三角形的逆命题;

命题a>b>0,a>b>0”的逆否命题;

命题m>1,mx2-2(m+1)x+(m-3)<0的解集为R”的逆命题.

其中真命题的序号为______.

【答案】①②③

【解析】

分别求出相应的命题,通过相关知识点即可判断真假,逆否命题直接判断原命题真假即可.

①否命题为:若,则方程有实根.根据判别式的性质可知为真命题;②逆命题为:若为等边三角形,则,易知为真命题;③,给不等号每一项都乘,可得:,所以为真命题,其逆否命题也是真命题;④逆命题为:若的解集为R,则,由条件可知:,所以必为假命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=﹣f(2a﹣x),则称f(x)为“准奇函数”.给定下列函数:①f(x)= ,②f(x)=(x+1)2;③f(x)=x3;④f(x)=sin(x+1),其中的“准奇函数”是(写出所有“准奇函数”的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinωx+cosωx(ω>0)的图象与x轴交点的横坐标构成一个公差为 的等差数列,把函数f(x)的图象沿x轴向左平移 个单位,得到函数g(x)的图象.关于函数g(x),下列说法正确的是(
A.在[ ]上是增函数
B.其图象关于直线x=﹣ 对称
C.函数g(x)是奇函数
D.当x∈[ π]时,函数g(x)的值域是[﹣2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4月23日是世界读书日,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为读书谜,低于60分钟的学生称为非读书谜

1的值并估计全校3000名学生中读书谜大概有多少?(将频率视为概率)

2根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为读书谜与性别有关?

非读书迷

读书迷

合计

15

45

合计

附:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 平面平面为等边三角形,, 作平面交分别于点,设.

(1)求证:平面

(2)求的值, 使得平面与平面所成的锐二面角的大小为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(1)求k的值;
(2)求f(x)的单调区间;
(3)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C的对边分别为a,b,c.角A,B,C成等差数列.
(1)求cosB的值;
(2)边a,b,c成等比数列,求sinAsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设随机变量ξ服从正态分布N(0,1),则下列结论正确的是(  )

①P(|ξ|<a)=P(ξ<a)+P(ξ>-a)(a>0);②P(|ξ|<a)=2P(ξ<a)-1(a>0);③P(|ξ|<a)=1-2P(ξ<a)(a>0);④P(|ξ|<a)=1-P(|ξ|≥a)(a>0).

A. ①② B. ②③

C. ①④ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C与椭圆E: 共焦点,并且经过点
(1)求椭圆C的标准方程;
(2)在椭圆C上任取两点P、Q,设PQ所在直线与x轴交于点M(m,0),点P1为点P关于轴x的对称点,QP1所在直线与x轴交于点N(n,0),探求mn是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案