【题目】已知圆M的方程为x2+(y﹣2)2=1,直线l的方程为x﹣2y=0,点P在直线l上,过点P作圆M的切线PA,PB,切点为A,B.
(1)若点P的横坐标为1,求切线PA,PB的方程;
(2)若点P的纵坐标为a,且在圆M上存在点Q到点P的距离为1,求实数a的取值范围.
科目:高中数学 来源: 题型:
【题目】(1)双曲线
的离心率为_____________
(2)点P是椭圆
上一点,
分别是椭圆的左、右焦点,若
,则
的大小______ .
(3)如果
是抛物线y2=4x上的点,它们的横坐标依次为
,F是抛物线的焦点,若
则
_______________.
(4)若x,y满足约束条件
,则z=x2+y2的最大值为______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}前n项和为Sn , 满足Sn=2an﹣2n(n∈N*).
(1)证明:{an+2}是等比数列,并求{an}的通项公式;
(2)数列{bn}满足bn=log2(an+2),Tn为数列{
}的前n项和,若Tn<a对正整数a都成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右顶点分别为A,B,直线l斜率大于0,且l经过椭圆的右焦点F,与椭圆交于两点P,Q,若△AFP,△BFQ的面积分别为S1,S2,若
,则直线l的斜率为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
,
是两条不同的直线,
,
是两个不同的平面,则下列命题中正确的是
A. 若
,
∥
,
∥
, 则![]()
B. 若
,
,
,则![]()
C. 若
∥
,
,
,则![]()
D. 若
∥
,
,
,则![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex(x2﹣a),a∈R.
(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若函数f(x)在(﹣3,0)上单调递减,试求a的取值范围;
(3)若函数f(x)的最小值为﹣2e,试求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:
![]()
现有A种原料200吨,B种原料360吨,C种原料300吨.在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y表示计划生产甲、乙两种肥料的车皮数.
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com