【题目】某校研究性学习小组从汽车市场上随机抽取
辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于
公里和
公里之间,将统计结果分成
组:
,
,
,
,
,绘制成如图所示的频率分布直方图.
![]()
(1)求直方图中
的值;
(2)求续驶里程在
的车辆数;
(3)若从续驶里程在
的车辆中随机抽取
辆车,求其中恰有一辆车的续驶里程在
内的概率.
【答案】(1)
;(2)5;(3)
.
【解析】试题分析:
(1)根据频率分布直方图中所有小矩形的面积和为
可求得
.(2)结合直方图和频数、样本容量和频率的关系求解即可.(3)由题意可知续驶里程在
和
内的车辆数分别为
辆,
辆,然后根据古典概型概率公式求解.
试题解析:
(1)由频率分布直方图中所有小矩形的面积和为
可得
,
解得
.
(2)由题意可知,续驶里程在
的车辆数为:
.
(3)由(2)及题意可知,续驶里程在
内的车辆数为
,分别记为
;续驶里程在
内的车辆数为
,分别记为
.
从该
辆汽车中随机抽取
辆,所有的可能情况如下:
,
,
,
,
,
,
,
,
,
,共
种.
设“恰有一辆车的续驶里程在
内”为事件
,则事件
包含的可能有
,
,
,
,
,
,共
种.
故
.
即恰有一辆车的续驶里程在
内的概率为
.
科目:高中数学 来源: 题型:
【题目】有下列四个命题:①“若
,则
,
互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若
,则
有实数解”的逆否命题;④“若
,则
”的逆否命题.其中真命题为________(填写所有真命题的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左焦点为
,离心率
.
![]()
(I)求椭圆C的标准方程;
(II)已知直线
交椭圆C于A,B两点.
①若直线
经过椭圆C的左焦点F,交y轴于点P,且满足
.求证:
为定值;
②若
,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年双11当天,某购物平台的销售业绩高达2135亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.
(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?
对服务好评 | 对服务不满意 | 合计 | |
对商品好评 | 140 | ||
对商品不满意 | 10 | ||
合计 | 200 |
(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.
①求随机变量X的分布列;
②求X的数学期望和方差.
附:
,其中n=a+b+c+d.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若
,函数
图象上是否存在两条互相垂直的切线,若存在,求出这两条切线;若不存在,说明理由.
(2)若函数
在
上有零点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】绝对值|x﹣1|的几何意义是数轴上的点x与点1之间的距离,那么对于实数a,b,
的几何意义即为点x与点a、点b的距离之和.
(1)直接写出
与
的最小值,并写出取到最小值时x满足的条件;
(2)设a1≤a2≤…≤an是给定的n个实数,记S=
.试猜想:若n为奇数,则当x∈ 时S取到最小值;若n为偶数,则当x∈ 时,S取到最小值;(直接写出结果即可)
(3)求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,四棱锥B-AEDC中,平面AEDC⊥平面ABC,F为BC的中点,P为BD的中点,且AE//DC,∠ACD=∠BAC=90°,DC=AC=AB=2AE
(1)证明:EP⊥平面BCD;
(2)若DC=2,求三棱锥E-BDF的体积.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
为常数,函数
,给出以下结论:
(1)若
,则
存在唯一零点
(2)若
,则![]()
(3)若
有两个极值点
,则![]()
其中正确结论的个数是( )
A. 3B. 2C. 1D. 0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com