【题目】已知F1,F2分别是椭圆C:
1(>b>0)的左、右焦点,过F2且不与x轴垂直的动直线l与椭圆交于M,N两点,点P是椭圆C右准线上一点,连结PM,PN,当点P为右准线与x轴交点时有2PF2=F1F2.
(1)求椭圆C的离心率;
(2)当点P的坐标为(2,1)时,求直线PM与直线PN的斜率之和.
科目:高中数学 来源: 题型:
【题目】已知动点E到点A(2,0)与点B(-2,0)的直线斜率之积为-
,点E的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点D(l,0)作直线l与曲线C交于P,Q两点,且
=-
.求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(为参数,倾斜角),曲线C的参数方程为
(
为参数,
),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系。
(1)写出曲线
的普通方程和直线的极坐标方程;
(2)若直线与曲线
恰有一个公共点
,求点
的极坐标。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在边长为3的菱形
中,已知
,且
.将梯形
沿直线
折起,使
平面
,如图2,
分别是
上的点.
![]()
(1)若平面
平面
,求
的长;
(2)是否存在点
,使直线
与平面
所成的角是
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
为抛物线
的焦点,过点
的直线
与抛物线
相交于
、
两点.
(1)若
,求此时直线
的方程;
(2)若与直线
垂直的直线
过点
,且与抛物线
相交于点
、
,设线段
、
的中点分别为
、
,如图,求证:直线
过定点;
![]()
(3)设抛物线
上的点
、
在其准线上的射影分别为
、
,若△
的面积是△
的面积的两倍,如图,求线段
中点的轨迹方程.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是正方形的四棱锥
中,
平面
,
,
是
的中点.
![]()
(1)求证:
平面
;
(2)在线段
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com