精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x-m|,函数g(x)=xf(x)+m2-7m.
(1)若m=1求不等式g(x)≥0的解集;
(2)求函数g(x)在[3,+∞)上的最小值;
(3)若对任意x1∈(-∞,4],均存在x2∈[3,+∞),使得f(x1)>g(x2)成立,求实数m的取值范围.
分析:(1)m=1时,g(x)=x|x-1|-6,原不等式即x|x-1|-6≥0,分情况去绝对值并结合一元二次不等式的解法,可得解集;
(2)去绝对值将g(x)化成分段函数的形式,结合二次函数的图象得到当m>0、当m<0和当m=0时3种情况下g(x)的单调性,根据这个单调性再结合m与3的大小关系,则不难得到g(x)的最小值的情况;
(3)由题意,f(x)在(-∞,4]上的最小值大于g(x)在[3,+∞)上的最小值,由此讨论函数f(x)的单调性,得到f(x)在(-∞,4]上的最小值,再结合(2)中所得结论,分3种情况建立不等式并解之,最后综合即可得到实数m的取值范围.
解答:解:(1)当m=1时,g(x)=xf(x)+m2-7m=x|x-1|-6.
不等式g(x)≥0,即x|x-1|-6≥0,
①当x≥1时,不等式转化为x2-x-6≥0,解之得x≥3或x≤-2
因为x≤-2不满足x≥1,所以此时x≥3
②当x<1时,不等式转化为-x2+x-6≥0,不等式的解集是空集
综上所述,不等式g(x)≥0的解集为[3,+∞);
(2)g(x)=xf(x)+m2-7m=
(x-
m
2
)2+
3
4
m2-7m       x≥m
-(x-
m
2
)2+
5
4
m2-7m      x<m

∴当m>0时,g(x)在区间(-∞,
m
2
)和(m,+∞)上是增函数;(
m
2
,m)上是减函数;
当m<0时,g(x)在区间(-∞,m)和(
m
2
,+∞)上是增函数;(m,
m
2
)上是减函数;
当m=0时,g(x)在区间(-∞,+∞)上是增函数.
∵定义域为x∈[3,+∞),
∴①当m≤3时,g(x)在区间[3,+∞)上是增函数,得g(x)的最小值为g(3)=m2-10m+9;
②当m>3时,因为g(0)=g(m)=m2-7m,结合函数g(x)的单调性,得g(3)>g(m)
∴g(x)的最小值为g(m)=m2-7m.
综上所述,得g(x)的最小值为
m2-10m+9      m≤3
m2-7m            m>3

(3)f(x)=
x-m      x≥m
m-x      x<m

因为x∈(-∞,4],所以当m<4时,f(x)的最小值为f(m)=0;
当m≥4时,f(x)的最小值为f(4)=m-4.
由题意,f(x)在(-∞,4]上的最小值大于g(x)在[3,+∞)上的最小值,结合(2)得
①当m≤3时,由0>m2-10m+9,得1<m<9,故1<m≤3;
②当3<m<4时,由0>m2-7m,得1<m<7,故3<m<4;
③当m≥4时,由m-4>m2-7m,得4-2
3
<m<4+2
3
,故4≤m<4+2
3

综上所述,实数m的取值范围是(1,4+2
3
点评:本题以含有绝对值的函数和二次函数为载体,讨论了函数的性质并解关于x的不等式,着重考查了绝对值不等式的解法、二次函数的图象与性质和函数奇偶性与单调性的综合等知识,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案