【题目】已知双曲线C:
(a>0,b>0)的渐近线方程为y=±
x,右顶点为(1,0).
(1)求双曲线C的方程;
(2)已知直线y=x+m与双曲线C交于不同的两点A,B,且线段AB的中点为
,当x0≠0时,求
的值.
【答案】(1)
;(2)3
【解析】
(1)由双曲线的渐近线方程为:
,得到
,又a=1,即可得到双曲线的方程;
(Ⅱ)联立直线方程和双曲线方程,消去y,得到x的方程,再由判别式大于0,运用韦达定理,以及中点坐标公式,得到中点的横坐标,再由直线方程得到纵坐标,进而得到答案.
(1)双曲线C:
-
=1(a>0,b>0)的渐近线方程为y=±
x,
由题意得
=
,a=1,解得b=
,所以双曲线的方程为x2-
=1.
(2)联立直线方程和双曲线方程,得到
消去y,得2x2-2mx-m2-3=0,则Δ=4m2+8(m2+3)>0,设A(x1,y1),B(x2,y2),x1+x2=m,则中点M的横坐标为x0=
,y0=x0+m=
m,所以
=3.
科目:高中数学 来源: 题型:
【题目】设椭圆
(
)的左、右焦点分别为
,过
的直线交椭圆于
,
两点,若椭圆
的离心率为
,
的周长为
.
(1)求椭圆
的方程;
(2)设不经过椭圆的中心而平行于弦
的直线交椭圆
于点
,
,设弦
,
的中点分别为
,证明:
三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的四个顶点组成的四边形的面积为
,且经过点
.
![]()
(1)求椭圆
的方程;
(2)若椭圆
的下顶点为
,如图所示,点
为直线
上的一个动点,过椭圆
的右焦点
的直线
垂直于
,且与
交于
两点,与
交于点
,四边形
和
的面积分别为
.求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是圆
上的任意一点,
是过点
且与
轴垂直的直线,
是直线
与
轴的交点,点
在直线
上,且满足
.当点
在圆
上运动时,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)已知点
,过
的直线
交曲线
于
两点,交直线
于点
.判定直线
的斜率是否依次构成等差数列?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是圆
上的任意一点,
是过点
且与
轴垂直的直线,
是直线
与
轴的交点,点
在直线
上,且满足
.当点
在圆
上运动时,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)已知点
,过
的直线
交曲线
于
两点,交直线
于点
.判定直线
的斜率是否依次构成等差数列?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率
,且椭圆过点
.
(1)求椭圆
的标准方程;
(2)设直线
与
交于
,
两点,点
在
上,
是坐标原点,若
,判断四边形
的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的六面体中,四边形
是边长为
的正方形,四边形
是梯形,
,平面
平面
,
,
.
![]()
(1)在图中作出平面
与平面
的交线,并写出作图步骤,但不要求证明;
(2)求证:
平面
;
(3)求平面
与平面
所成角的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的
城市和交通拥堵严重的
城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:
![]()
(1)根据茎叶图,比较两城市满意度评分的平均值的大小(不要求计算具体值,给出结论即可);
(2)若得分不低于85分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此列联表,并据此样本分析是否有
的把握认为城市拥堵与认可共享单车有关;
|
| 合计 | |
认可 | |||
不认可 | |||
合计 |
(3)若此样本中的
城市和
城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自
城市的概率是多少?
(参考公式:
)
| 0.10 | 0.05 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com