【题目】一个小球放入一长方形容器内,且与有公共顶点的三个面相接触,若小球上一点到这三个面的距离分别为4、5、5,则该小球的半径是_____.
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当a=1时,求函数
的单调区间;
(2)若
在
上恒成立,求实数a的取值范围;
(3)是否存在实数a,使函数
的最小值是3?若存在,求出a的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知函数
在
处的切线方程为
,函数
.
(1)求函数
的解析式;
(2)求函数
的极值;
(3)设
(
表示
,
中的最小值),若
在
上恰有三个零点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用
,化简,得
.设勾股形中勾股比为
,若向弦图内随机抛掷
颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的三个顶点分别为A(﹣3,0),B(2,1),C(﹣2,3),试求:
(1)边AC所在直线的方程;
(2)BC边上的中线AD所在直线的方程;
(3)BC边上的高AE所在直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分)一家公司计划生产某种小型产品的月固定成本为
万元,每生产
万件需要再投入
万元.设该公司一个月内生产该小型产品
万件并全部销售完,每万件的销售收入为
万元,且每万件国家给予补助
万元. (
为自然对数的底数,
是一个常数.)
(Ⅰ)写出月利润
(万元)关于月产量
(万件)的函数解析式;
(Ⅱ)当月生产量在
万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生产量值(万件). (注:月利润=月销售收入+月国家补助-月总成本).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点
在
轴上,中心在坐标原点,长轴长为4,短轴长为
.
(1)求椭圆的标准方程;
(2)是否存在过
的直线
,使得直线
与椭圆
交于
,
?若存在,请求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com