【题目】如图所示(单位:cm),四边形ABCD是直角梯形,求图中阴影部分绕AB旋转一周所成几何体的表面积和体积.
![]()
【答案】表面积为
,体积为
.
【解析】
试题分析:由题意知,所围成的几何体的表面积等于圆台的下底面积+圆台的侧面积+半球表面,该几何体的体积圆台的体积减去半个球的体积,由此可求出结果.
试题解析:由题意知,知所成几何体的表面积等于圆台下底面积+圆台的侧面积+半球面面积.
又S半球面=
×4π×22=8π(cm2),
S圆台侧=π(2+5)
=35π(cm2),
S圆台下底=π×52=25π(cm2),
即该几何全的表面积为8π+35π+25π=68π(cm2).
又V圆台=
×(22+2×5+52)×4=52π(cm3),V半球=
×
×23=
(cm3).
所以该几何体的体积为V圆台-V半球=52π-
=
(cm3).
科目:高中数学 来源: 题型:
【题目】如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-
(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.
设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2016年高考四川理数】设函数f(x)=ax2-a-lnx,其中a ∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)确定a的所有可能取值,使得
在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x-1+
x2-2,试利用基本初等函数的图象,判断f(x)有几个零点,并利用零点存在性定理确定各零点所在的区间(各区间长度不超过1).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为公差不为零的等差数列,首项
,
的部分项
、
、 、
恰为等比数列,且
,
,
.
(1)求数列
的通项公式
(用
表示);
(2)设数列
的前
项和为
, 求证:
(
是正整数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com