【题目】某班有50名学生,男女人数不相等。随机询问了该班5名男生和5名女生的某次数学测试成绩,用茎叶图记录如下图所示,则下列说法一定正确的是( )
![]()
A. 这5名男生成绩的标准差大于这5名女生成绩的标准差。
B. 这5名男生成绩的中位数大于这5名女生成绩的中位数。
C. 该班男生成绩的平均数大于该班女生成绩的平均数。
D. 这种抽样方法是一种分层抽样。
科目:高中数学 来源: 题型:
【题目】已知点
和直线
,
为曲线
上一点,
为点
到直线
的距离且满足
.
(1)求曲线
的轨迹方程;
(2)过点
作曲线
的两条动弦
,若直线
斜率之积为
,试问直线
是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某渔业公司今年初用98万元购进一艘渔船进行捕捞,第一年需要各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元.
(1)该船捕捞第几年开始盈利?
(2)若该船捕捞
年后,年平均盈利达到最大值,该渔业公司以24万元的价格将捕捞船卖出;求
并求总的盈利值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥PABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.
(1)求证:MN∥平面BDE;
(2)求二面角CEMN的正弦值;
(3)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为
,求线段AH的长.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
中,
为等边三角形,且平面
平面
,
,
,
.
![]()
(Ⅰ)证明:
;
(Ⅱ)若棱锥
的体积为
,求该四棱锥的侧面积.
【答案】(Ⅰ)证明见解析;(Ⅱ)
.
【解析】【试题分析】(I) 取
的中点为
,连接
,
.利用等腰三角形的性质和矩形的性质可证得
,由此证得
平面
,故
,故
.(II) 可知
是棱锥的高,利用体积公式求得
,利用勾股定理和等腰三角形的性质求得
的值,进而求得面积.
【试题解析】
证明:(Ⅰ)取
的中点为
,连接
,
,
∵
为等边三角形,∴
.
底面
中,可得四边形
为矩形,∴
,
∵
,∴
平面
,
∵
平面
,∴
.
又
,所以
.
(Ⅱ)由面
面
,
,
∴
平面
,所以
为棱锥
的高,
由
,知
,
,
∴
.
由(Ⅰ)知
,
,∴
.
.
由
,可知
平面
,∴
,
因此
.
在
中
,
,
取
的中点
,连结
,则
,
,
∴
.
所以棱锥
的侧面积为
.
【题型】解答题
【结束】
20
【题目】已知圆
经过椭圆
:
的两个焦点和两个顶点,点
,
,
是椭圆
上的两点,它们在
轴两侧,且
的平分线在
轴上,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)证明:直线
过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com