【题目】四棱锥
中,
,且
平面
,
,
,
是棱
的中点.
![]()
(1)证明:
平面
;
(2)求二面角
的余弦值.
【答案】(1)证明见解析;(2)
.
【解析】试题分析:(1)取
中点
,连接
、
,四边形
是平行四边形,通过证明
面ACD,来证明
平面
。(2)取
中点
,过N点做BE的平行线为y轴,NB,NA分别为x,z轴建立空间直角坐标系,由空间向量求二面角的余弦值。
试题解析:(1)取
中点
,连接
、
,
∵
是
中点,∴
,且
.
又因为
,∴
.又∵
,∴
,∴四边形
是平行四边形.∴
,又
,∴
是等边三角形,∴
,∵
平面
,
,∴
平面
,∴
,∴
平面
,∴
平面
.
(2)取
中点
,则
,
平面
,以
为原点建立如图所示的直角坐标系.
各点坐标为
,
,
,
,
,
.
可得
,
,
,
;
设平面
的法向量
,则
得
,
取
,
设平面
的法向量
,则
得
,
取
,
于是
,
注意到二面角
是钝角,因此,所求二面角的余弦值就是
.
![]()
科目:高中数学 来源: 题型:
【题目】已知抛物线
的准线与
轴交于点
,过点
作圆
的两条切线,切点为
,且
.
(1)求抛物线
的方程;
(2)若直线
是过定点
的一条直线,且与抛物线
交于
两点,过定点
作
的垂线与抛物线交于
两点,求四边形
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某中学举行的物理知识竞赛中,将三个年级参赛学生的成绩在进行整理后分成5组,绘制出如图所示的须率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组.已知第三小组的频数是15.
![]()
(1)求成绩在50-70分的频率是多少
(2)求这三个年级参赛学生的总人数是多少:
(3)求成绩在80-100分的学生人数是多少
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点
为曲线
的一个焦点,
为坐标原点,点
为抛物线
上任意一点,过点
作
轴的平行线交抛物线的准线于
,直线
交抛物线于点
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)若
、
、
三个点满足
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
, ![]()
(Ⅰ)当
时,求函数
的单调递减区间;
(Ⅱ)若
时,关于
的不等式
恒成立,求实数
的取值范围;
(Ⅲ)若数列
满足
,
,记
的前
项和为
,求证:
.
【答案】(I)
;(II)
;(III)证明见解析.
【解析】试题分析:(Ⅰ)求出
,在定义域内,分别令
求得
的范围,可得函数
增区间,
求得
的范围,可得函数
的减区间;(Ⅱ)当
时,因为
,所以
显然不成立,先证明因此
时,
在
上恒成立,再证明当
时不满足题意,从而可得结果;(III)先求出等差数列的前
项和为
,结合(II)可得
,各式相加即可得结论.
试题解析:(Ⅰ)由
,得
.所以![]()
令
,解得
或
(舍去),所以函数
的单调递减区间为
.
(Ⅱ)由
得, ![]()
当
时,因为
,所以
显然不成立,因此
.
令
,则
,令
,得
.
当
时,
,
,∴
,所以
,即有
.
因此
时,
在
上恒成立.
②当
时,
,
在
上为减函数,在
上为增函数,
∴
,不满足题意.
综上,不等式
在
上恒成立时,实数
的取值范围是
.
(III)证明:由
知数列
是
的等差数列,所以![]()
所以![]()
由(Ⅱ)得,
在
上恒成立.
所以
. 将以上各式左右两边分别相加,得
.因为![]()
所以![]()
所以
.
【题型】解答题
【/span>结束】
22
【题目】已知直线
, (
为参数,
为倾斜角).以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的直角坐标方程为
.
(Ⅰ)将曲线
的直角坐标方程化为极坐标方程;
(Ⅱ)设点
的直角坐标为
,直线
与曲线
的交点为
、
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占
.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
(1)求出
的值;
(2)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(3)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求这2组恰好抽到2人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的导函数f '(x)的图象如图所示,f(-1)=f(2)=3,令g(x)=(x-1)f(x),则不等式g(x)≥3x-3的解集是( )
![]()
A. [-1,1]∪[2,+∞)B. (-∞,-1]∪[1,2]
C. (-∞,-1]∪[2,+∞)D. [-1,2]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课辅导,每天共200分钟.教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了80名学生(其中男女生恰好各占一半)进行问卷调查,按男女生分为两组,再将每组学生在线学习时间(分钟)分为5组
,
,
,
,
得到如图所示的频率分布直方图.全区高三学生有3000人(男女生人数大致相等),以频率估计概率回答下列问题:
![]()
![]()
(1)估计全区高三学生中网上学习时间不超过40分钟的人数;
(2)在调查的80名高三学生且学习时间不超过40分钟的学生中,男女生按分层抽样的方法抽取6人.若从这6人中随机抽取2人进行电话访谈,求至少抽到1名男生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com