【题目】某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳含量达到了危险状态,经抢修,排气扇恢复正常.排气
后,测得车库内的一氧化碳浓度为
,继续排气
,又测得浓度为
,经检测知该地下车库一氧化碳浓度
与排气时间
存在函数关系:
(
,
为常数)。
(1)求
,
的值;
(2)若地下车库中一氧化碳浓度不高于
为正常,问至少排气多少分钟,这个地下车库中的一氧化碳含量才能达到正常状态?
科目:高中数学 来源: 题型:
【题目】如图,O为坐标原点,点F为抛物线C1:
的焦点,且抛物线C1上点P处的切线与圆C2:
相切于点Q.
![]()
(Ⅰ)当直线PQ的方程为
时,求 抛物线C1的方程;
(Ⅱ)当正数P变化时,记S1 ,S2分别为△FPQ,△FOQ的面积,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有三个乡镇,分别位于一个矩形
的两个顶点M,N及
的中点S处,
,现要在该矩形的区域内(含边界),且与M,N等距离的一点O处设一个宣讲站,记O点到三个乡镇的距离之和为
.
(1)设
,试将L表示为x的函数并写出其定义域;
(2)试利用(1)的函数关系式确定宣讲站O的位置,使宣讲站O到三个乡镇的距离之和
最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
(
,且
).
(1)当
(其中
,且t为常数)时,
是否存在最小值,如果存在,求出最小值;如果不存在,请说明理由;
(2)当
时,求满足不等式
的实数x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,函数
的图象在
处的切线与直线
平行.
(Ⅰ)求实数
的值;
(Ⅱ)若函数
存在单调递减区间,求实数
的取值范围;
(Ⅲ)设
(
)是函数
的两个极值点,若
,试求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形
所在的半平面和直角梯形
所在的半平面成
的二面角,
,
,
,
,
,
.
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)试问在线段
上是否存在一点
,使锐二面角
的余弦值为
.若存在,请求出
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com