精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知 ,sinA= . (Ⅰ)求sinC的值;
(II)设D为AC的中点,若△ABC的面积为8 ,求BD的长.

【答案】解:在△ABC中,∵ , ∴cbcosA=cacosB,
即bcosA=acosB,
sinBcosA=sinAcosB,
sin(A﹣B)=0,
∴A=B,
∵sinA=
∴sinC=sin(π﹣2A)=sin(2A)=2sinAcosA=2× × =
(Ⅱ)设AC=BC=m,
∵△ABC的面积为8
× =
m=3 ,cosC=
根据余弦定理得出:
BD2=
BD=
【解析】(Ⅰ)利用向量的数量积和正玄定理得出sinBcosA=sinAcosB,根据三角公式得出A=B,根据诱导公式求解即可.(Ⅱ)利用面积公式,以及余弦定理求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:

产假安排(单位:周)

14

15

16

17

18

有生育意愿家庭数

4

8

16

20

26


(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?
(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择. ①求两种安排方案休假周数和不低于32周的概率;
②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设命题:函数上单调递减,命题:对任意实数,不等式恒成立.

(1)写出命题的否定,并求非为真时,实数的取值范围;

(2)如果命题“”为真命题,且“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学要从高一年级甲、乙两个班级中选择一个班参加市电视台组织的“环保知识竞赛”.该校对甲、乙两班的参赛选手(每班7人)进行了一次环境知识测试,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85分,乙班学生成绩的中位数是85.

(1)求的值;

(2)根据茎叶图,求甲、乙两班同学成绩的方差的大小,并从统计学角度分析,该校应选择甲班还是乙班参赛.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)定义域为R,f(﹣x)=f(x),f(x)=f(2﹣x),当x∈[0,1]时,f(x)=x3 , 则函数g(x)=|cos(πx)|﹣f(x)在区间[﹣ ]上的所有零点的和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直棱柱中,已知,设中点为中点为

Ⅰ)求证:平面

Ⅱ)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)上不是单调函数,则实数k的取值范围是(
A.(1,2)
B.[1,2)
C.[0,2)
D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了加强环保建设,提高社会效益和经济效益,某市计划用若干年时间更换一万辆燃油型公交车。每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车。今年初投入了电力型公交车辆,混合动力型公交车辆,计划以后电力型车每年的投入量比上一年增加,混合动力型车每年比上一年多投入辆.设分别为第年投入的电力型公交车、混合动力型公交车的数量,设分别为年里投入的电力型公交车、混合动力型公交车的总数量。

1)求,并求年里投入的所有新公交车的总数

2)该市计划用年的时间完成全部更换,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数,其中.

(1)当时,求函数的单调区间;

(2)若方程有三个互不相同的根0,,其中.

①是否存在实数,使得成立?若存在,求出的值;若不存在,说明理由.

②若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案