【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知
,sinA=
. (Ⅰ)求sinC的值;
(II)设D为AC的中点,若△ABC的面积为8
,求BD的长.
科目:高中数学 来源: 题型:
【题目】自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:
产假安排(单位:周) | 14 | 15 | 16 | 17 | 18 |
有生育意愿家庭数 | 4 | 8 | 16 | 20 | 26 |
(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?
(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择. ①求两种安排方案休假周数和不低于32周的概率;
②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
且
,设命题
:函数
在
上单调递减,命题
:对任意实数
,不等式
恒成立.
(1)写出命题
的否定,并求非
为真时,实数
的取值范围;
(2)如果命题“
”为真命题,且“
”为假命题,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学要从高一年级甲、乙两个班级中选择一个班参加市电视台组织的“环保知识竞赛”.该校对甲、乙两班的参赛选手(每班7人)进行了一次环境知识测试,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85分,乙班学生成绩的中位数是85.
![]()
(1)求
的值;
(2)根据茎叶图,求甲、乙两班同学成绩的方差的大小,并从统计学角度分析,该校应选择甲班还是乙班参赛.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)定义域为R,f(﹣x)=f(x),f(x)=f(2﹣x),当x∈[0,1]时,f(x)=x3 , 则函数g(x)=|cos(πx)|﹣f(x)在区间[﹣
,
]上的所有零点的和为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=
x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)上不是单调函数,则实数k的取值范围是( )
A.(1,2)
B.[1,2)
C.[0,2)
D.(0,2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了加强环保建设,提高社会效益和经济效益,某市计划用若干年时间更换一万辆燃油型公交车。每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车。今年初投入了电力型公交车
辆,混合动力型公交车
辆,计划以后电力型车每年的投入量比上一年增加
,混合动力型车每年比上一年多投入
辆.设
、
分别为第
年投入的电力型公交车、混合动力型公交车的数量,设
、
分别为
年里投入的电力型公交车、混合动力型公交车的总数量。
(1)求
、
,并求
年里投入的所有新公交车的总数
;
(2)该市计划用
年的时间完成全部更换,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
为
的导函数,其中
.
(1)当
时,求函数
的单调区间;
(2)若方程
有三个互不相同的根0,
,
,其中
.
①是否存在实数
,使得
成立?若存在,求出
的值;若不存在,说明理由.
②若对任意的
,不等式
恒成立,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com