精英家教网 > 高中数学 > 题目详情

【题目】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点在圆周上, 在边上,且,设.

(1)记游泳池及其附属设施的占地面积为,求的表达式

2)当为何值时,能符合园林局的要求?

【答案】(1);(2)

【解析】试题分析:1)由已知分别用θ表示两个矩形的长和宽, 可得fθ的表达式;(2)要符合园林局的要求,只要f(θ)最小,求导,利用导数法分析当时, 是单调减函数,当时, 是单调增函数,所以当时, 取得最小值即可得答案.

试题解析:

(1)由题意, ,且为等边三角形,

所以,

(2)要符合园林局的要求,只要最小,

由(1知,

,即,解得(舍去),

时, 是单调减函数,当时, 是单调增函数,所以当时, 取得最小值.

答:当满足时,符合园林局要求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列各项均为正数, ,且对任意恒成立,记的前项和为.

(1)若,求的值;

(2)证明:对任意正实数 成等比数列;

(3)是否存在正实数,使得数列为等比数列.若存在,求出此时的表达式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数f(x)是单调区间;

(2)如果关于x的方程有实数根,求实数的取值集合;

(3)是否存在正数k,使得关于x的方程有两个不相等的实数根?如果存在,求k满足的条件;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面 .

(1)求证: 平面

(2)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当处的切线与直线垂直时,方程有两相异实数根,求的取值范围;

(2)若幂函数的图象关于轴对称,求使不等式上恒成立的的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= g(x)=

1)若,函数的图像与函数的图像相切,求的值

2)若 ,函数满足对任意x1x2),都有恒成立,求的取值范围

3)若,函数=f(x)+ g(x),G()有两个极值点x1,x2,其中x1,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中, ,前项和满足).

⑴ 求数列的通项公式;

,求数列的前项和

⑶ 是否存在整数对(其中 )满足?若存在,求出所有的满足题意的整数对;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱台中, 侧面与侧面是全等的梯形,若,且.

(Ⅰ)若 ,证明: ∥平面

(Ⅱ)若二面角,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知为椭圆 的右焦点, 为椭圆的下、上、右三个顶点, 的面积之比为.

(1)求椭圆的标准方程;

(2)试探究在椭圆上是否存在不同于点 的一点满足下列条件:点轴上的投影为 的中点为,直线交直线于点 的中点为,且的面积为.若不存在,请说明理由;若存在,求出点的坐标.

查看答案和解析>>

同步练习册答案