【题目】在对人们休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(Ⅰ)根据以上数据建立一个2×2列联表;
(Ⅱ)能否在犯错误的概率不超过0.05的前提下认为性别与休闲方式有关系?
附: ![]()
![]()
科目:高中数学 来源: 题型:
【题目】(1)若直角三角形两直角边长之和为12,求其周长
的最小值;
(2)若三角形有一个内角为
,周长为定值
,求面积
的最大值;
(3)为了研究边长
满足
的三角形其面积是否存在最大值,现有解法如下:
(其中
, 三角形面积的海伦公式),
∴![]()
![]()
,
而
,
,
,则
,
但是,其中等号成立的条件是
,于是
与
矛盾,
所以,此三角形的面积不存在最大值.
以上解答是否正确?若不正确,请你给出正确的答案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
,
,函数
的图象过点
,点
与其相邻的最高点的距离为
.
(1)求
的单调递增区间;
(2)计算
;
(3)设函数
,试讨论函数
在区间
上的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点
作一直线与抛物线
交于
,
两点,点
是抛物线
上到直线
的距离最小的点,直线
与直线
交于点
.
![]()
(Ⅰ)求点
的坐标;
(Ⅱ)求证:直线
平行于抛物线的对称轴.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
,函数
,
(
为自然对数的底数),且函数
的图象与函数
的图象在
处有公共的切线.
(Ⅰ)求
的值;
(Ⅱ)讨论函数
的单调性;
(Ⅲ)证明:当
时,
在区间
内恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知曲线
,以平面直角坐标系
的原点
为极点,
轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线
.
(1)将曲线
上的所有点的横坐标、纵坐标分别伸长为原来的
倍后得到曲线
.试写出直线
的直角坐标方程和曲线
的参数方程:
(2)在曲线
上求一点
,使点
到直线
的距离最大,并求出此最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组
,第二组
,…,第五组
,下图是按上述分组方法得到的频率分布直方图.
![]()
(1)根据频率分布直方图,估计这50名学生百米测试成绩的平均值;
(2)若从第一组、第五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com