【题目】已知函数
.
(I)若函数
处取得极值,求曲线
在点
处的切线方程;
(II)若函数
上的最小值是
,求
的值.
【答案】(Ⅰ)
;(Ⅱ)4.
【解析】
试题分析:(Ⅰ)根据条件可得
,求
,再利用导数的几何意义,曲线在
处切线的斜率就是
,这样根据切点坐标和斜率写出切线方程;(Ⅱ)先求函数的导数,并且求函数的极值点,
和
,分
,
,和
三种情况讨论函数的单调性,并且得到函数的最小值,分别令最小值为
,求实数
的值.
试题解析:(Ⅰ)
,
![]()
是函数的极值点,
,即
,解得:
,
,
,
则
,
,
所以
在点
处的切线方程为
;
(Ⅱ)由(Ⅰ)知,![]()
,
① 当
时,
,
,
故
不合题意,
② 当
时,令
,则有
,或
,令
,则
,
所以
在
上递增,在
上递减,在
上递增,
在
上的最小值为
或
,
,
,解得:
,
③当
时,令
,则有
,或
,令
,则
,
在
上递增,在
上递减,在
上递增,
,解得
与
矛盾.
综上所述:符合条件的
的值为4.
科目:高中数学 来源: 题型:
【题目】在对人们休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(Ⅰ)根据以上数据建立一个2×2列联表;
(Ⅱ)能否在犯错误的概率不超过0.05的前提下认为性别与休闲方式有关系?
附: ![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:在数列
中,若
为常数)则称
为“等方差数列”,下列是对“等方差数列”的有关判断( )
①若
是“等方差数列”,在数列
是等差数列;
②
是“等方差数列”;
③若
是“等方差数列”,则数列
为常)也是“等方差数列”;
④若
既是“等方差数列”又是等差数列,则该数列是常数数列.
其中正确命题的个数为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,以
为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆
的标准方程;
(2)已知点
,和平面内一点
,过点
任作直线
与椭圆
相交于
两点,设直线
的斜率分别为
,
,试求
满足的关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小明准备利用暑假时间去旅游,妈妈为小明提供四个景点,九寨沟、泰山、长白山、武夷山.小明决定用所学的数学知识制定一个方案来决定去哪个景点:(如图)曲线
和直线
交于点
.以
为起点,再从曲线
上任取两个点分别为终点得到两个向量,记这两个向量的数量积为
.若
去九寨沟;若
去泰山;若
去长白山;
去武夷山.
![]()
(1)若从
这六个点中任取两个点分别为终点得到两个向量,分别求小明去九寨沟的概率和不去泰山的概率;
(2)按上述方案,小明在曲线
上取点
作为向量的终点,则小明决定去武夷山.点
在曲线
上运动,若点
的坐标为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的图象上有一点列
,点
在
轴上的射影是
,且
(
且
),
.
(1)求证:
是等比数列,并求出数列
的通项公式;
(2)对任意的正整数
,当
时,不等式
恒成立,求实数
的取值范围.
(3)设四边形
的面积是
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:
摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.
(1)摸出的3个球为白球的概率是多少?
(2)摸出的3个球为2个黄球1个白球的概率是多少?
(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】20名同学参加某次数学考试成绩(单位:分)的频率分布直方图如下:
![]()
(Ⅰ)求频率分布直方图中
的值;
(Ⅱ)分别求出成绩落在
,
中的学生人数;
(Ⅲ)从成绩在
的学生中任选2人,求此2人的成绩都在
中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为
,且成绩分布在
,分数在
以上(含
)的同学获奖. 按文理科用分层抽样的方法抽取
人的成绩作为样本,得到成绩的频率分布直方图(见下图).
(1)求
的值,并计算所抽取样本的平均值
(同一组中的数据用该组区间的中点值作代表);
(2)填写下面的
列联表,能否有超过
的把握认为“获奖与学生的文理科有关”?
文科生 | 理科生 | 合计 | |
获奖 |
| ||
不获奖 | |||
合计 |
|
![]()
附表及公式:
,其中![]()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com