【题目】一胸针图样由等腰三角形
及圆心
在中轴线上的圆弧
构成,已知
,
.为了增加胸针的美观程度,设计师准备焊接三条金丝线
且
长度不小于
长度,设
.
![]()
(1)试求出金丝线的总长度
,并求出
的取值范围;
(2)当
为何值时,金丝线的总长度
最小,并求出
的最小值.
科目:高中数学 来源: 题型:
【题目】如图,椭圆
:
(
)和圆
:
,已知圆
将椭圆
的长轴三等分,椭圆
右焦点到右准线的距离为
,椭圆
的下顶点为
,过坐标原点
且与坐标轴不重合的任意直线
与圆
相交于点
、
.
![]()
(1)求椭圆
的方程;
(2)若直线
、
分别与椭圆
相交于另一个交点为点
、
.
①求证:直线
经过一定点;
②试问:是否存在以
为圆心,
为半径的圆
,使得直线
和直线
都与圆
相交?若存在,请求出实数
的范围;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两地相距300千米,汽车从甲地匀速行驶到乙地,速度不超过100千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度
(千米/小时)的平方成正比,比例系数为
(
),固定部分为1000元.
(1)把全程运输成本
(元)表示为速度
(千米/小时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①
是
与
的等差中项;②
是
与
的等比中项;③数列
的前5项和为65这三个条件中任选一个,补充在横线中,并解答下面的问题.
已知
是公差为2的等差数列,其前
项和为
,________________________.
(1)求
;
(2)设
,是否存在
,使得
?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:若一个函数存在极大值,且该极大值为负数,则称这个函数为“
函数”.
(1)判断函数
是否为“
函数”,并说明理由;
(2)若函数
是“
函数”,求实数
的取值范围;
(3)已知
,
,
、
,求证:当
,且
时,函数
是“
函数”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为梯形,
,若棱
,
,
两两垂直,长度分别为1,2,2,且向量
与
夹角的余弦值为
.
![]()
(1)求
的长度;
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系
中,曲线
的参数方程为
(
为参数,且
).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)已知点P的极坐标为
,Q为曲线
上的动点,求
的中点M到曲线
的距离的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com