【题目】过抛物线
的焦点
且斜率为1的直线交抛物线
于
,
两点,且
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)抛物线
上一点
,直线
(其中
)与抛物线
交于
,
两个不同的点(
,
均不与点
重合).设直线
,
的斜率分别为
,
,
.直线
是否过定点?如果是,请求出所有定点;如果不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,且曲线
与
恰有一个公共点.
(Ⅰ)求曲线
的极坐标方程;
(Ⅱ)已知曲线
上两点
,
满足
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,焦距为
.
(1)求椭圆
的标准方程;
(2)若一直线
与椭圆
相交于
、
两点(
、
不是椭圆的顶点),以
为直径的圆过椭圆
的上顶点,求证:直线
过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解小学生的体能情况,现抽取某小学六年级100名学生进行跳绳测试,观察记录孩子们三分钟内的跳绳个数,将所得的数据整理后画出频率分布直方图,跳绳个数的数值落在区间
,
,
内的频率之比为
.(计算结果保留小数点后面3位)
![]()
(Ⅰ)求这些学生跳绳个数的数值落在区间
内的频率;
(Ⅱ)用分层抽样的方法在区间
内抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2个学生,求这2个学生跳绳个数的数值都在区间
内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续
天监测空气质量指数(
),数据统计如下:
空气质量指数( | 0-50 | 51-100 | 101-150 | 151-200 | 201-250 |
空气质量等级 | 空气优 | 空气良 | 轻度污染 | 中度污染 | 重度污染 |
天数 | 20 | 40 |
| 10 | 5 |
(1)根据所给统计表和频率分布直方图中的信息求出
的值,并完成频率分布直方图;
![]()
(2)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件
“两天空气都为良”发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正整数的数列{an}的前n项和为Sn,满足:Sn﹣1+kan=tan2﹣1,n≥2,n∈N*(其中k,t为常数).
(1)若k=
,t=
,数列{an}是等差数列,求a1的值;
(2)若数列{an}是等比数列,求证:k<t.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(其中
为参数).在以坐标原点
为极点,以
轴正半轴为极轴建立的极坐标系中,曲线
的极坐标方程为
,曲线
的直角坐标方程为
.
(1)求直线
的极坐标方程和曲线
的直角坐标方程;
(2)若直线
与曲线
分别相交于异于原点的点
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com