【题目】在平面直角坐标系
中,已知椭圆
的离心率为
,且过点
.
![]()
(1)求椭圆
的方程;
(2)设点
,点
在
轴上,过点
的直线交椭圆
交于
,
两点.
①若直线
的斜率为
,且
,求点
的坐标;
②设直线
,
,
的斜率分别为
,
,
,是否存在定点
,使得
恒成立?若存在,求出
点坐标;若不存在,请说明理由.
【答案】(1)
;(2)①
;②存在,
.
【解析】
(1)利用椭圆的离心率为
、过点
以及
建立方程组,求出
和
的值即可;
(2)①设出直线
的方程,联立直线与椭圆的方程,结合韦达定理和
,得出
的值即可;②假设
成立,设
,分别讨论直线
的斜率是否为
的情形,联立直线与圆锥曲线的方程以及利用
,解出
的值,求出
点坐标即可.
(1)
椭圆
的离心率为
,且过点
.
![]()
,解之得:
,
椭圆
的方程为:
;
(2)设
,
,
①设直线
的方程为:
,
由
,得:
,
,故
,
![]()
,
,
![]()
,解得
.
![]()
;
②
,设
,
(ⅰ)当直线
的斜率为
时,
,
,
由
,可得
,解得
,即
;
(ⅱ)当直线
的斜率不为
时,设
,
,
设直线
的方程为
,
由
,得:![]()
![]()
,
.
由
,可得
,
,
,
,
,
当
时,上式恒成立.
综上,存在定点
,使得
恒成立.
科目:高中数学 来源: 题型:
【题目】有关命题的说法错误的是( )
A.若p∨q为假命题,则p、q均为假命题
B.“x=1”是“x2﹣3x+2=0”的充分不必要条件
C.命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”
D.对于命题p:x≥0,2x=3,则¬P:x<0,2x≠3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体
中,平面
平面
.四边形
为正方形,四边形
为梯形,且
,
,
,
.
![]()
(1)求证:
;
(2)求直线
与平面
所成角的正弦值;
(3)线段
上是否存在点
,使得直线
平面
若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
,长半轴长与短半轴长的差为
,离心率为
.
(1)求椭圆
的标准方程;
(2)若在
轴上存在点
,过点
的直线
分别与椭圆
相交于
、
两点,且
为定值,求点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现要完成下列3项抽样调查:①从20罐奶粉中抽取4罐进行食品安全卫生检查;②从某社区100户高收入家庭,270户中等收入家庭,80户低收入家庭中选出45户进行消费水平调查;③某中学报告厅有28排,每排有35个座位,一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请28名听众进行座谈.较为合理的抽样方法是( )
A.①系统抽样;②简单随机抽样;③分层抽样
B.①简单随机抽样;②分层抽样;③系统抽样
C.①分层抽样;②系统抽样;③简单随机抽样
D.①简单随机抽样;②系统抽样;③分层抽样
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线x2=4y.
![]()
(1)求抛物线在点P(2,1)处的切线方程;
(2)若不过原点的直线l与抛物线交于A,B两点(如图所示),且OA⊥OB,|OA|=
|OB|,求直线l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知点
在圆柱
的底面圆
上,
为圆
的直径.
![]()
(1)若圆柱
的体积
为
,
,
,求异面直线
与
所成的角(用反三角函数值表示结果);
(2)若圆柱
的轴截面是边长为2的正方形,四面体
的外接球为球
,求
两点在球
上的球面距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年的政府工作报告强调,要树立绿水青山就是金山银山理念,以前所未有的决心和力度加强生态环境保护.某地科技园积极检查督导园区内企业的环保落实情况,并计划采取激励措施引导企业主动落实环保措施,下图给出的是甲、乙两企业2012年至2017年在环保方面投入金额(单位:万元)的柱状图.
![]()
(Ⅰ)分别求出甲、乙两企业这六年在环保方面投入金额的平均数;(结果保留整数)
(Ⅱ)园区管委会为尽快落实环保措施,计划对企业进行一定的奖励,提出了如下方案:若企业一年的环保投入金额不超过200万元,则该年不奖励;若企业一年的环保投入金额超过200万元,不超过300万元,则该年奖励20万元;若企业一年的环保投入金额超过300万元,则该年奖励50万元.
(ⅰ)分别求出甲、乙两企业这六年获得的奖励之和;
(ⅱ)现从甲企业这六年中任取两年对其环保情况作进一步调查,求这两年获得的奖励之和不低于70万元的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com