【题目】设
是实数,已知奇函数
,
(1)求
的值;
(2)证明函数
在R上是增函数;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0有解,求k的取值范围.
【答案】(1)1;(2)见解析;(3)![]()
【解析】
(1)由奇函数的性质可得
,可解得
的值,验证即可得结论;(2)由(1)的结论,可得
,在已知区间上任取
;作差
、变形和定符号、由作差法分析可得结论;(3)根据题意,由函数的奇偶性与单调性分析,原不等式可以变形为
,进而可得
,求得
的最小值,即可得结果.
(1)∵f(x)为R奇函数,∴f(0)=0,
,
解得a=1
(2)由(1)的结论,
,
设
,则
,
又由
,
,
则
,
则函数
在
是增函数.
(3)∵f(x)为奇函数,由不等式f(t2﹣2t)+f(2t2﹣k)<0化为
f(t2﹣2t)<﹣f(2t2﹣k),即f(t2﹣2t)<f(k﹣2t2),
又∵f(t)为增函数,t2﹣2t<k﹣2t2,∴3t2﹣2t<k.
当t=﹣
时,3t2﹣2t有最小值﹣
,∴k>-
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系上,有一点列P0 , P1 , P2 , P3 , …,Pn﹣1 , Pn , 设点Pk的坐标(xk , yk)(k∈N,k≤n),其中xk、yk∈Z,记△xk=xk﹣xk﹣1 , △yk=yk﹣yk﹣1 , 且满足|△xk||△yk|=2(k∈N* , k≤n);
(1)已知点P0(0,1),点P1满足△y1>△x1>0,求P1的坐标;
(2)已知点P0(0,1),△xk=1(k∈N* , k≤n),且{yk}(k∈N,k≤n)是递增数列,点Pn在直线l:y=3x﹣8上,求n;
(3)若点P0的坐标为(0,0),y2016=100,求x0+x1+x2+…+x2016的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,
轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线
的极坐标方程为
,曲线
的极坐标方程为
.
(1)设
为参数,若
,求直线
的参数方程;
(2)已知直线
与曲线
交于
,设
,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
的左、右焦点为
,右顶点为
,上顶点为
,若
,
与
轴垂直,且
.
(1)求椭圆方程;
(2)过点
且不垂直于坐标轴的直线与椭圆交于
两点,已知点
,当
时,求满足
的直线
的斜率
的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别为A,B,C所对边,a+b=4,(2﹣cosA)tan
=sinA.
(1)求边长c的值;
(2)若E为AB的中点,求线段EC的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}定义为a1>0,a11=a,an+1=an+
an2 , n∈N*
(1)若a1=
(a>0),求
+
+…+
的值;
(2)当a>0时,定义数列{bn},b1=ak(k≥12),bn+1=﹣1+
,是否存在正整数i,j(i≤j),使得bi+bj=a+
a2+
﹣1.如果存在,求出一组(i,j),如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左右焦点分别为
,上顶点为
,若直线
的斜率为1,且与椭圆的另一个交点为
,
的周长为
.
(1)求椭圆的标准方程;
(2)过点
的直线
(直线
的斜率不为1)与椭圆交于
两点,点
在点
的上方,若
,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 向量
=(Sn , 1),
=(2n﹣1,
),满足条件
∥
,
(1)求数列{an}的通项公式,
(2)设函数f(x)=(
)x , 数列{bn}满足条件b1=1,f(bn+1)=
.
①求数列{bn}的通项公式,
②设cn=
,求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的右焦点为
,右顶点为
,已知
,其中
为坐标原点,
为椭圆的离心率.
(1)求椭圆
的方程;
(2)是否存在斜率为2的直线
,使得当直线
与椭圆
有两个不同交点
时,能在直线
上找到一点
,在椭圆
上找到一点
,满足
?若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com