【题目】已知直线l:x﹣2y+2m﹣2=0.
(1)求过点(2,3)且与直线l垂直的直线的方程;
(2)若直线l与两坐标轴所围成的三角形的面积大于4,求实数m的取值范围.
【答案】
(1)解:∵直线l:x﹣2y+2m﹣2=0的斜率为
,
∴与直线l垂直的直线的斜率为﹣2,
因为点(2,3)在该直线上,
所以所求直线方程为y﹣3=﹣2(x﹣2),
故所求的直线方程为2x+y﹣7=0.
(2)直线l与两坐标轴的交点分别为(﹣2m+2,0),(0,m﹣1),
则所围成的三角形的面积为
×|﹣2m+2|×|m﹣1|.
由题意可知
×|﹣2m+2|×|m﹣1|>4,化简得(m﹣1)2>4,
解得m>3或m<﹣1,
所以实数m的取值范围是(﹣∞,﹣1)∪(3,+∞).
【解析】(1)求出直线l的斜率,得到与直线l垂直的直线的斜率,由点斜式可得出直线方程,(2)得出直线l与两坐标轴的交点坐标,表示出面积公式,解出m的取值范围.
【考点精析】关于本题考查的截距式方程,需要了解直线的截距式方程:已知直线
与
轴的交点为A
,与
轴的交点为B
,其中
才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知关于
的函数
为
上的偶函数,且在区间
上的最大值为10. 设
.
⑴ 求函数
的解析式;
⑵ 若不等式
在
上恒成立,求实数
的取值范围;
⑶ 是否存在实数
,使得关于
的方程
有四个不相等的实 数根?如果存在,求出实数
的范围,如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某射击运动员每次击中目标的概率都是0.7.现采用随机模拟的方法估计该运动员射击4次,至少击中2次的概率:先由计算器算出0~9之间取整数值的随机数,指定0,1,2表示没有击中目标,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:
5727 0293 7140 9857 0347
4373 8636 9647 1417 4698
0371 6233 2616 8045 6011
3661 9597 7424 6710 4281
据此估计,该射击运动员射击4次至少击中2次的概率为( )
A. 0.8 B. 0.85 C. 0.9 D. 0.95
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在
年初的时候,国家政府工作报告明确提出,
年要坚决打好蓝天保卫战,加快解决燃煤污染问题,全面实施散煤综合治理.实施煤改电工程后,某县城的近六个月的月用煤量逐渐减少,
月至
月的用煤量如下表所示:
月份 |
|
|
|
|
|
|
用煤量 |
|
|
|
|
|
|
(1)由于某些原因,
中一个数据丢失,但根据
至
月份的数据得出
样本平均值是
,求出丢失的数据;
(2)请根据
至
月份的数据,求出
关于
的线性回归方程
;
(3)现在用(2)中得到的线性回归方程中得到的估计数据与
月
月的实际数据的误差来判断该地区的改造项目是否达到预期,若误差均不超过
,则认为该地区的改造已经达到预期,否则认为改造未达预期,请判断该地区的煤改电项目是否达预期?
(参考公式:线性回归方程
,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,若三边的长为连续的三个正整数,且A>B>C,3b=20acos A,则sin A:sin B:sin C为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,圆O:x2+y2=4与x轴的正半轴交于点A,以A为圆心的圆A:(x﹣2)2+y2=r2(r>0)与圆O交于B,C两点.![]()
(1)若直线l与圆O切于第一象限,且与坐标轴交于D,E,当线段DE长最小时,求直线l的方程;
(2)设P是圆O上异于B,C的任意一点,直线PB、PC分别与x轴交于点M和N,问OMON是否为定值?若是,请求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个关于圆锥曲线的命题中:
①双曲线
与椭圆
有相同的焦点;
②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的;
③设A、B为两个定点,k为常数,若|PA|﹣|PB|=k,则动点P的轨迹为双曲线;
④过定圆C上一点A作圆的动弦AB,O为原点,若
则动点P的轨迹为椭圆.其中正确的个数是( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知p:x2﹣2x﹣8≤0,q:x2+mx﹣6m2≤0,m>0.
(1)若q是p的必要不充分条件,求m的取值范围;
(2)若p是q的充分不必要条件,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com