【题目】已知点
,点
在
轴上,点
在
轴的正半轴上,点
在直线
上,且满足![]()
(Ⅰ)当点
在
轴上移动时,求点
的轨迹
的方程;
(Ⅱ)过点
做直线
与轨迹
交于
两点,若在
轴上存在一点
,使得
是以点
为直角顶点的直角三角形,求直线
的斜率
的取值范围.
【答案】(1)
;(2)
.
【解析】试题分析:(Ⅰ)本问考查求轨迹方程,设动点
,由于点
在
轴上,点
在
轴的正半轴上,于是可以根据条件
表示出
,再根据
,坐标表示后整理可求出N点的轨迹方程,注意曲线上点坐标的取值范围;(Ⅱ)本问考查直线与抛物线位置关系,由题分析,直线
的斜率显然存在且不为0,于是可设
方程为
,与曲线C的方程联立,消去未知数x,得到关于y的一元二次方程,设
,于是得出
,
,根据弦长公式求出
,若在
轴上存在一点
,使得
是以为直角顶点的直角三角形,则点
到
轴的距离不大于
,转化为关于
的不等式,可以求出取值范围.
试题解析:(Ⅰ)设点
,由
,得
,
由
得
,所以![]()
又因为点
在
轴的正半轴上,所以
,所以![]()
(Ⅱ)设直线![]()
得直线
的方程代入
,得
,①
又
是方程①的两个不相等的实根,
由
,解得
②
线段
的中点
的坐标为![]()
![]()
在
轴上存在一点
,使得
是以为直角顶点的直角三角形,
点
到
轴的距离不大于
,即![]()
化简,得
,解得![]()
结合②得直线
的斜率的取值范围为
.
科目:高中数学 来源: 题型:
【题目】根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图.
(1)已知
、
,
三个年龄段的上网购物者人数成等差数列,求
,
的值;
(2)该电子商务平台将年龄在
之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放80元的代金券,已经采用分层抽样的方式从参与调查的1000位上网购物者中抽取了10人,现在要在这10人中随机抽取3人进行回访,求此三人获得代金券总和
的分布列与数学期望.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
,
,函数
的图象过点
,点
与其相邻的最高点的距离为
.
(1)求
的单调递增区间;
(2)计算
;
(3)设函数
,试讨论函数
在区间
上的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
,函数
,
(
为自然对数的底数),且函数
的图象与函数
的图象在
处有公共的切线.
(Ⅰ)求
的值;
(Ⅱ)讨论函数
的单调性;
(Ⅲ)证明:当
时,
在区间
内恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知曲线
,以平面直角坐标系
的原点
为极点,
轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线
.
(1)将曲线
上的所有点的横坐标、纵坐标分别伸长为原来的
倍后得到曲线
.试写出直线
的直角坐标方程和曲线
的参数方程:
(2)在曲线
上求一点
,使点
到直线
的距离最大,并求出此最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组
,第二组
,…,第五组
,下图是按上述分组方法得到的频率分布直方图.
![]()
(1)根据频率分布直方图,估计这50名学生百米测试成绩的平均值;
(2)若从第一组、第五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,椭圆
和抛物线
交于
两点,且直线
恰好通过椭圆
的右焦点.
(1)求椭圆
的标准方程;
(2)经过椭圆
右焦点的直线
和椭圆
交于
两点,点
在椭圆上,且
,
其中
为坐标原点,求直线
的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com