精英家教网 > 高中数学 > 题目详情

【题目】设函数fx)=x23x

1)若不等式fx)≥m对任意x[01]恒成立,求实数的取值范围;

2)在(1)的条件下,m取最大值时,设x0y02x+4y+m0,求的最小值.

【答案】(1) m≤﹣2;(2) 3+2.

【解析】

1分析函数fx)=x23x[01]上的单调性,进而求出函数的最小值,可得实数m的取值范围;

21得:m=﹣2,即x+2y1,利用基本不等式,可得的最小值.

解:1函数fx)=x23x的图象是开口朝上,且以直线x为对称轴的抛物线,

故函数fx)=x23x[01]上单调递减,

x1时,函数取最小值﹣2

若不等式fx)≥m对任意x[01]恒成立,

m≤﹣2

21得:m=﹣2

2x+4y2,即x+2y1

x0y0

)(x+2y)=33+23+2

的最小值为3+2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,是正三角形,线段都垂直于平面,设,且的中点.

(1)求证:平面

(2)求证:

(3)求平面与平面所成的较小二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2018·赣中联考]李冶(1192-1279),真实栾城(今属河北石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)(

A. 10步,50 B. 20步,60 C. 30步,70 D. 40步,80

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为常数).

(1)若函数与函数处有相同的切线,求实数的值;

(2)若,且,证明:

(3)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数(实数为常数)

1)当时,证明上单调递减;

2)若,且为偶函数,求实数的值;

3)小金同学在求解函数的对称中心时,发现函数是一个复合函数,设,则,显然有对称中心,设为有反函数,则的对称中心为,请问小金的做法是否正确?如果正确,请给出证明,并直接写出当的对称中心;如果错误,请举出反例,并用正确的方法直接写出当的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑。若三棱锥P-ABC为鳖臑,PA⊥面ABC,PA=AB=2,AC=4,三棱锥P-ABC的四个顶点都在球的球面上,则球0的表面积为( )

A. 8πB. 12πC. 20πD. 24π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题P:不等式的解集中的整数有且仅有-101.a的取值范围.

命题Q:集合.

1)分别求命题PQ为真命题时的实数a的取值范围;

2)当实数a取何值时,命题PQ中有且仅有一个为真命题;

3)设PQ皆为真时a的取值范围为集合S,若全集,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中,表示同一个函数的是(   ).

A.y=x+1y=B.y=x0y=C.f(x)=(x-1)2g(x)=(x+1)2D.f(x)=g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题10分) 从3名男生和名女生中任选2人参加比赛。

①求所选2人都是男生的概率;

②求所选2人恰有1名女生的概率;

③求所选2人中至少有1名女生的概率

查看答案和解析>>

同步练习册答案