【题目】.口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.
(Ⅰ)求甲赢且编号的和为6的事件发生的概率;
(Ⅱ)这种游戏规则公平吗?试说明理由.
【答案】(1)
(2)这种游戏规则不公平
【解析】
试题(1)相当于两人掷含有
个面的色子,共
种情况,然后输入和为偶数,且和为
的情况种数,然后用古典概型求概率;(2)偶数,就是甲胜,其他情况乙胜,分别算出甲胜的概率和乙胜的概率,比较是否相等,相等就公平,不相等就不公平.
试题解析:解:(1)设“甲胜且编号的和为6”为事件
.
甲编号为
,乙编号为
,
表示一个基本事件,
则两人摸球结果包括(1,2),(1,3),…,(1,5),(2,1),(2,2),…,(5,4),(5,5)共25个基本事件;
包括的基本事件有(1,5),(2,4),(3,3),(4,2),(5,1)共5个.
∴
.
答:甲胜且编号的和为6的事件发生的概率为
.
(2)这种游戏不公平.
设“甲胜”为事件
,“乙胜”为事件
.甲胜即两个编号的和为偶数所包含基本事件数为以下13个:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).
所以甲胜的概率为
,乙胜的概率为
,
∵
,∴这种游戏规则不公平.
科目:高中数学 来源: 题型:
【题目】已知椭圆
及点
,若直线
与椭圆
交于点
,且
(
为坐标原点),椭圆
的离心率为
.
(1)求椭圆
的标准方程;
(2)若斜率为
的直线
交椭圆
于不同的两点
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.
镇有基层干部60人,
镇有基层干部60人,
镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从
三镇共选40名基层干部,统计他们走访贫困户的数量,并将走访数量分成5组,
,绘制成如图所示的频率分布直方图.
![]()
(1)求这40人中有多少人来自
镇,并估计
三镇的基层干部平均每人走访多少贫困户;(同一组中的数据用该组区间的中点值作代表)
(2)如果把走访贫困户达到或超过25户视为工作出色,以频率估计概率,从
三镇的所有基层干部中随机选取3人,记这3人中工作出色的人数为
,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为比较注射
两种药物产生的皮肤疱疹的面积,选200只家兔作试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物
,另一组注射药物
.表1和表2所示的分别是注射药物
和药物
后皮肤疱疹面积的频数分布(疱疹面积单位:
)
表1
疱疹面积 |
|
|
|
|
频数 | 30 | 40 | 20 | 10 |
表2
疱疹面积 |
|
|
|
|
|
频数 | 10 | 25 | 20 | 30 | 15 |
(1)完成图20-3和图20-4所示的分别注射药物
后皮肤疱疹面积的频率分布直方图,并求注射药物
后疱疹面积的中位数
![]()
(2)完成下表所示的
列联表,并回答能否有99.9%的把握认为注射药物
后的疱疹面积与注射药物
的疱疹面积有差异.(
的值精确到0.01)
疱疹面积小于 | 疱疹面积不小于 | 合计 | |
注射药物A |
|
| |
注射药物B |
|
| |
合计 |
附:
.
P( | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.811 | 5.021 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0且满足不等式22a+1>25a﹣2.
(1)求实数a的取值范围;
(2)求不等式loga(3x+1)<loga(7﹣5x);
(3)若函数y=loga(2x﹣1)在区间[1,3]有最小值为﹣2,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】长沙某公司生产一种高科技晶片100片,生产过程中由于受到一些不可抗因素的影响,晶片会受到一定程度的磨损,因此在生产结束之后需要由测试人员进行相应的指标测试.指标测试情况统计如表所示:
若
,则称该晶片为合格品,否则该晶片为劣质品.
![]()
(1)试求本次生产过程中该公司生产出合格品的频率以及数量;
(2)求这批晶片测试指标的平均值;
(3)现按照分层抽样的方法在测试指标在
与
之间的晶片中抽取6个晶片,再从这6个晶片中任取2个晶片进入深入分析,求恰有1个晶片的测试指标在
之间的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com