【题目】如图所示,在四棱锥S-ABCD中,四边形ABCD是菱形,
,
,点P,Q,M分别是线段SD,PD,AP的中点,点N是线段SB上靠近B的四等分点.
![]()
(1)若R在直线MQ上,求证:
平面ABCD;
(2)若
平面ABCD,求平面SAD与平面SBC所成的锐二面角的余弦值.
【答案】(1)见解析;(2)![]()
【解析】
(1)利用面面平行的判定定理、面面平行的性质定理即可证出.
(2)以D为坐标原点,建立空间直角坐标系
,不妨设
,求出平面SBC的一个法向量与平面SAD的一个法向量,利用向量的数量积即可求解.
(1)依题意,
,故
,
而
平面ABCD,
平面ABCD,故
平面ABCD;
因为
,故
,
而
平面ABCD,
平面ABCD,故
平面ABCD;
因为
,故平面
平面ABCD;
因为
平面QMN,故
平面ABCD;
(2)如图,
![]()
以D为坐标原点,建立如图所示空间直角坐标系
,不妨设
,
则
,
,
,
,
∴
,
,
设平面SBC的一个法向量为
,则
,
取
,可得
,
易知平面SAD的一个法向量
,
设平面SAD与平面SBC所成锐二面角为
,则
,
∴平面SAD与平面SBC所成锐二面角的余弦值为
.
科目:高中数学 来源: 题型:
【题目】设
,
是两条不同的直线,
,
,
是三个不同的平面,给出下列四个命题:
①若
,
,则![]()
②若
,
,
,则![]()
③若
,
,则![]()
④若
,
,则![]()
其中正确命题的序号是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设曲线
上一点
到焦点的距离为3.
(1)求曲线C方程;
(2)设P,Q为曲线C上不同于原点O的任意两点,且满足以线段PQ为直径的圆过原点O,试问直线PQ是否恒过定点?若恒过定点,求出定点坐标;若不恒过定点,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数
满足:对于任意正数
,都有
,且
,则称函数
为“L函数”.
(1)试判断函数
与
是否是“L函数”;
(2)若函数
为“L函数”,求实数a的取值范围;
(3)若函数
为“L函数”,且
,求证:对任意
,都有
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
,直线
交椭圆
于
,
两点.
(1)若点
满足
(
为坐标原点),求弦
的长;
(2)若直线
的斜率不为0且过点
,
为点
关于
轴的对称点,点
满足
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三个校区分别位于扇形OAB的三个顶点上,点Q是弧AB的中点,现欲在线段OQ上找一处开挖工作坑P(不与点O,Q重合),为小区铺设三条地下电缆管线PO,PA,PB,已知OA=2千米,∠AOB=
,记∠APQ=θrad,地下电缆管线的总长度为y千米.
(1)将y表示成θ的函数,并写出θ的范围;
(2)请确定工作坑P的位置,使地下电缆管线的总长度最小.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
在
上有定义,实数
和
满足
.若
在区间
上不存在最小值,则称
在区间
上具有性质P.
(1)当
,且
在区间
上具有性质P,求常数C的取值范围;
(2)已知
,且当
时,
,判别
在区间
上是否具有性质P;
(3)若对于满足
的任意实数
和
,
在区间
上具有性质P,且对于任意
,当
时,有:
,证明:当
时,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据某省的高考改革方案,考生应在3门理科学科(物理、化学、生物)和3门文科学科(历史、政治、地理)的6门学科中选择3门学科参加考试.根据以往统计资料,1位同学选择生物的概率为0.5,选择物理但不选择生物的概率为0.2,考生选择各门学科是相互独立的.
(1)求1位考生至少选择生物、物理两门学科中的1门的概率;
(2)某校高二段400名学生中,选择生物但不选择物理的人数为140,求1位考生同时选择生物、物理两门学科的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com