【题目】某次招聘分为笔试和面试两个环节,且只有笔试过关者方可进入面试环节,笔试与面试都过关才会被录用.笔试需考完全部三科,且至少有两科优秀才算笔试过关,面试需考完全部两科且两科均为优秀才算面试过关.假设某考生笔试三科每科优秀的概率均为
,面试两科每科优秀的概率均为
.
(1)求该考生被录用的概率;
(2)设该考生在此次招聘活动中考试的科目总数为
,求
的分布列与数学期望.
科目:高中数学 来源: 题型:
【题目】某大学生参加社会实践活动,对某公司1月份至6月份销售某种配件的销售量及销售单价进行了调查,销售单价
和销售量
之间的一组数据如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
销售单价 | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
销售量 | 11 | 10 | 8 | 6 | 5 | 14.2 |
(1)根据1至5月份的数据,先求出
关于
的回归直线方程;6月份的数据作为检验数据.若由回归直线方程得到的预测数据与检验数据的误差不超过
,则认为所得到的回归直线方程是理想的.试问所求得的回归直线方程是否理想?
(2)预计在今后的销售中,销售量与销售单价仍然服从(1)中的回归关系,如果该种机器配件的成本是
元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考数据:
,
.
参考公式:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为
的正方体
中,
为
的中点,
为
上任意一点,
,
为
上任意两点,且
的长为定值,则下面的四个值中不为定值的是( )
![]()
A. 点
到平面
的距离B. 三棱锥
的体积
C. 直线
与平面
所成的角D. 二面角
的大小
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区某农产品近几年的产量统计如下表:
![]()
(1)根据表中数据,建立
关于
的线性回归方程
;
(2)若近几年该农产品每千克的价格
(单位:元)与年产量
满足的函数关系式为
,且每年该农产品都能售完.
①根据(1)中所建立的回归方程预测该地区
年该农产品的产量;
②当
为何值时,销售额
最大?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂共有
名工人,已知这
名工人去年完成的产品数都在区间
(单位:万件)内,其中每年完成
万件及以上的工人为优秀员工,现将其分成
组,第
组、第
组、第
组、第
组、第
组对应的区间分别为
,
,
,
,
,并绘制出如图所示的频率分布直方图.
![]()
(1)求
的值,并求去年优秀员工人数;
(2)选取合适的抽样方法从这
名工人中抽取容量为
的样本,求这
组分别应抽取的人数;
(3)现从(2)中
人的样本中的优秀员工中随机选取
名传授经验,求选取的
名工人在同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数).以原点
为极点,
轴的正半轴为极轴建立极坐标系,且曲线
的极坐标方程为
.
(1)写出直线
的普通方程与曲线
的直角坐标方程;
(2)设直线
上的定点
在曲线
外且其到
上的点的最短距离为
,试求点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年4月1日,新华通讯社发布:国务院决定设立河北雄安新区.消息一出,河北省雄县、容城、安新3县及周边部分区域迅速成为海内外高度关注的焦点.
(1)为了响应国家号召,北京市某高校立即在所属的8个学院的教职员工中作了“是否愿意将学校整体搬迁至雄安新区”的问卷调查,8个学院的调查人数及统计数据如下:
调查人数( | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |
愿意整体搬迁人数( | 8 | 17 | 25 | 31 | 39 | 47 | 55 | 66 |
请根据上表提供的数据,用最小二乘法求出变量
关于变量
的线性回归方程
保留小数点后两位有效数字);若该校共有教职员工2500人,请预测该校愿意将学校整体搬迁至雄安新区的人数;
(2)若该校的8位院长中有5位院长愿意将学校整体搬迁至雄安新区,现该校拟在这8位院长中随机选取4位院长组成考察团赴雄安新区进行实地考察,记
为考察团中愿意将学校整体搬迁至雄安新区的院长人数,求
的分布列及数学期望.
参考公式及数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率
,短轴的一个端点到焦点的距离为
.
(1)求椭圆
的方程;
(2)斜率为
的直线
与椭圆
交于
,
两点,线段
的中点在直线
上,求直线
与
轴交点纵坐标的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com