【题目】现从某学校中选出
名学生,统计了
名学生一周的户外运动时间(分钟)总和,得到如图所示的频率分布直方图和统计表格.
![]()
(1)写出
的值,并估计该学校人均每周的户外运动时间(同一组数据用该组区间的中点值作代表);
(2)从该校学生中抽取5名学生,记5名学生中每周户外运动时长在
的人数为
,求
的分布列和数学期望;
(3)完成下列
列联表,并回答能否有90%的把握认为“每周至少运动130分钟与性别有关”?
每周户外运动时间不少于130分钟 | 每周户外运动时间少于130分钟 | 合计 | |
男 | |||
女 | |||
合计 |
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
|
|
【答案】(1)
;平均数为
分钟;(2)分布列见解析,
;(3)列联表见解析,没有90%的把握认为“每周至少运动130分钟与性别有关”.
【解析】
(1)利用户外运动时间在
的人数为10可求出M,由所给时长分布表中所有数据之和等于总数20可求得a,再根据表中对应数据求出m、n;(2)由题可知
,由二项分布概率计算公式逐一计算
的概率完成分布列,直接利用二项分布的均值公式
即可求得均值;(3)根据表格中的数据完成列联表,代入公式求出
,与附表比较可得结论.
(1)由题可知
,得
,
则
,
,
.
该校人均户外运动时间为
分钟.
(2)由题可知,
,
则
,
,
,
的分布列为:
| 0 | 1 | 2 | 3 | 4 | 5 |
|
|
|
|
|
|
|
.
(3)表格如下:
每周户外运动时间不少于130分钟 | 每周户外运动时间少于130分钟 | 合计 | |
男 | 3 | 8 | 11 |
女 | 1 | 8 | 9 |
合计 | 4 | 16 | 20 |
,所以没有
科目:高中数学 来源: 题型:
【题目】已知函数
(
,
为自然对数的底数).
(1)若函数
在点
处的切线的斜率为
,求实数
的值;
(2)当
时,讨论函数
的单调性;
(3)若关于
的不等式
在区间
上恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系
中,曲线
的方程为
,以原点
为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.若将曲线
上的所有点的横坐标缩小到原来的一半,纵坐标伸长到原来的
倍,得曲线
.
(1)写出直线
和曲线
的直角坐标方程;
(2)设点
, 直线
与曲线
的两个交点分别为
,
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年,新型冠状病毒引发的疫情牵动着亿万人的心,八方驰援战疫情,众志成城克时难,社会各界支援湖北共抗新型冠状病毒肺炎,重庆某医院派出3名医生,2名护士支援湖北,现从这5人中任选2人定点支援湖北某医院,则恰有1名医生和1名护士被选中的概率为( )
A.0.7B.0.4C.0.6D.0.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位同学参加某个知识答题游戏节目,答题分两轮,第一轮为“选题答题环节”第二轮为“轮流坐庄答题环节”.首先进行第一轮“选题答题环节”,答题规则是:每位同学各自从备选的5道不同题中随机抽出3道题进行答题,答对一题加10分,答错一题(不答视为答错)减5分,已知甲能答对备选5道题中的每道题的概率都是
,乙恰能答对备选5道题中的其中3道题;第一轮答题完毕后进行第二轮“轮流坐庄答题环节”,答题规则是:先确定一人坐庄答题,若答对,继续答下一题…,直到答错,则换人(换庄)答下一题…以此类推.例如若甲首先坐庄,则他答第1题,若答对继续答第2题,如果第2题也答对,继续答第3题,直到他答错则换成乙坐庄开始答下一题,…直到乙答错再换成甲坐庄答题,依次类推两人共计答完20道题游戏结束,假设由第一轮答题得分期望高的同学在第二轮环节中最先开始作答,且记第
道题也由该同学(最先答题的同学)作答的概率为
(
),其中
,已知供甲乙回答的20道题中,甲,乙两人答对其中每道题的概率都是
,如果某位同学有机会答第
道题且回答正确则该同学加10分,答错(不答视为答错)则减5分,甲乙答题相互独立;两轮答题完毕总得分高者胜出.回答下列问题
(1)请预测第二轮最先开始作答的是谁?并说明理由
(2)①求第二轮答题中
,
;
②求证
为等比数列,并求
(
)的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高中三个年级共有4000人,为了了解各年级学周末在家的学习情况,现通过分层抽样的方法获得相关数据如下(单位:小时),其中高一学生周末的平均学习时间记为
.
高一:14 15 15.5 16.5 17 17 18 19
高二:15 16 16 16 17 17 18.5
高三:16 17 18 21.5 24
(1)求每个年级的学生人数;
(2)从高三被抽查的同学中随机抽取2人,求2人学习时间均超过
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为实数,用
表示不超过
的最大整数,例如
,
,
,对于函数
,若存在
,
,使得
,则称函数
是“
函数”.
(1)判断函数
,
是否是“
函数”;
(2)设函数
是定义在
上的周期函数,其最小正周期是
,若
不是“
函数”,求
的最小值;
(3)若函数
是“
函数”,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com