【题目】称直角坐标系中纵横坐标均为整数的 点为“格点”,称一格点沿坐标线到原点的最短路程为该点到原点的“格点距离”,格点距离为定值的点的轨迹称为“格点圆”,该定值称为格点圆的半径,而每一条最短路程称为一条半径.当格点半径为2005时,格点圆的半径有________条.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0),四点P1(1,1),P2(0,1),P3(–1,
),P4(1,
)中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
是边长为4的正方形,平面
平面
,
,
.
![]()
(1)求二面角
的余弦值;
(2)在线段
是否存在点
,使得
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在2018年俄罗斯世界杯期间,莫斯科的部分餐厅经营了来自中国的小龙虾,这些小龙虾标有等级代码.为得到小龙虾等级代码数值
与销售单价
之间的关系,经统计得到如下数据:
等级代码数值 | 38 | 48 | 58 | 68 | 78 | 88 |
销售单价 | 16.8 | 18.8 | 20.8 | 22.8 | 24 | 25.8 |
(1)已知销售单价
与等级代码数值
之间存在线性相关关系,求
关于
的线性回归方程(系数精确到0.1);
(2)若莫斯科某餐厅销售的中国小龙虾的等级代码数值为98,请估计该等级的中国小龙虾销售单价为多少元?
参考公式:对一组数据
,
,····
,其回归直线
的斜率和截距最小二乘估计分别为:
,
.
参考数据:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设自然数
。求证:全体不大于n的合数可重新排列(不一定按原来的大小顺序排列),使得每三个依次相邻的数都有大于1的公因数(例如,当
时,排列
就满足要求)。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的右焦点为
,右顶点为
,设离心率为
,且满足
,其中
为坐标原点.
(1)求椭圆
的方程;
(2)过点(0,1)的直线
与椭圆交于
,
两点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“过大年,吃水饺”是我国不少地方过春节的一大习俗,2020年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标.
![]()
(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数
(同一组中的数据用该组区间的中点值作代表);
(2)①由直方图可以认为,速冻水饺的该项质量指标值
服从正态分布
,利用该正态分布,求
落在
内的概率;
②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于
内的包数为
,求
的分布列和数学期望.
附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为
;
②若
,则
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com