精英家教网 > 高中数学 > 题目详情
若定义在R上的函数f(x)同时满足下列三个条件:
①对任意实数a,b均有f(a+b)=f(a)+f(b)成立;
f(4)=
1
4

③当x>0时,都有f(x)>0成立.
(1)求f(0),f(8)的值;
(2)求证:f(x)为R上的增函数;
(3)求解关于x的不等式f(x-3)-f(3x-5)≤
1
2
(1)令a=b=0得f(0)=0,令a=b=4得f(8)=
1
2

(2)证明:设x1<x2,则x2-x1>0,f(x2-x1)>0;
∴f(x2)=f(x1)+f(x2-x1)>f(x1),
∴f(x2)>f(x1),
∴f(x)为R上的增函数;
(3)由已知得f(4)+f(4)=
1
4
+
1
4
=
1
2
=f(4+4)=f(8),
∵对任意实数a,b均有f(a+b)=f(a)+f(b)成立,f(0)=0,
∴令a=x,b=-x,则f(-x)+f(x)=f(0)=0,
∴f(-x)=-f(x),
∴f(x-3)-f(3x-5)=f(2-2x),
∵f(x-3)-f(3x-5)≤f(8),
∴f(2-2x))≤f(8),
又f(x)为R上的增函数,
∴2-2x≤8,解得x≥-3.
故原不等式的解集为:{x|x≥-3}.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)的定义域为A,若x1、x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①若函数f(x)是f(x)=x2(x∈R),则f(x)一定是单函数;
②若f(x)为单函数,x1、x2∈A且x1≠x2,则f(x1)≠f(x2);
③若定义在R上的函数f(x)在某区间上具有单调性,则f(x)一定是单函数;
④若函数f(x)是周期函数,则f(x)一定不是单函数;
⑤若函数f(x)是奇函数,则f(x)一定是单函数.
其中的真命题的序号是
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的函数f(x)满足对任意x,y∈R,都有f(x+y)=f(x)+f(y)+2,则下列说法一定正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f(x)>1.
(1)求f(0)的值;
(2)求证:f(x)是R上的增函数;
(3)若f(4)=5,不等式f(cos2x+asinx-2)<3对任意的x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的函数f(x)为奇函数,且在[0,+∞)上是增函数.
(1)求证:f(x)在(-∞,0]上也是增函数;
(2)对任意θ∈R,不等式f(cos2θ-3)+f(2m-sinθ)>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若定义在R上的函数f(x)满足f(-x)=f(x),f(2-x)=f(x),且当x∈[0,1]时,其图象是四分之一圆(如图所示),则函数H(x)=|xex|-f(x)在区间[-3,1]上的零点个数为(  )
A、5B、4C、3D、2

查看答案和解析>>

同步练习册答案