【题目】已知函数
,
(
为正常数),且函数
与
的图像在
轴上的截距相等;
(1)求
的值;
(2)若
(
为常数),试讨论函数
的奇偶性.
【答案】(1)
;(2)答案不唯一,见解析
【解析】
(1)利用函数f(x)与g(x)的图象在y轴上的截距相等,建立方程,可求a的值;
(2)利用奇偶函数的定义,确定b的值,进而可得函数的奇偶性.
(1)由题意,∵函数f(x)与g(x)的图象在y轴上的截距相等,∴f(0)=g(0),即|a|=1,又a>0,故a=1.
(2)h(x)=f(x)+b
=|x﹣1|+b|x+1|,其定义域为R,∴h(﹣x)=|x+1|+b|x﹣1|.
若h(x)为偶函数,即h(x)=h(﹣x),则有b=1,此时h(2)=4,h(﹣2)=4,
故h(2)≠﹣h(﹣2),即h(x)不为奇函数;
若h(x)为奇函数,即h(x)=﹣h(﹣x),则b=﹣1,此时h(2)=2,h(﹣2)=﹣2,
故h(2)≠h(﹣2),即h(x)不为偶函数;
综上,当且仅当b=1时,函数h(x)为偶函数,且不为奇函数,当且仅当b=﹣1时,函数h(x)为奇函数,且不为偶函数,当b≠±1时,函数h(x)既非奇函数又非偶函数.
科目:高中数学 来源: 题型:
【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数
(个)和温度
(
)的7组观测数据,其散点图如所示:
![]()
根据散点图,结合函数知识,可以发现产卵数
和温度
可用方程
来拟合,令
,结合样本数据可知
与温度
可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:
|
|
|
|
|
|
27 | 74 |
| 182 |
|
|
表中
,
.
(1)求
和温度
的回归方程(回归系数结果精确到
);
(2)求产卵数
关于温度
的回归方程;若该地区一段时间内的气温在
之间(包括
与
),估计该品种一只昆虫的产卵数的范围.(参考数据:
,
,
,
,
.)
附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,
,
,动点
满足:直线
与直线
的斜率之积恒为
,记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若点
位于第一象限,过点
,
分别作直线
,直线
,直线
,
交于点
.
①若点
的横坐标为-1,求点
的坐标;
②直线
与曲线
交于点
,且
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,有下列五个命题:
①若
存在反函数,且与反函数图象有公共点,则公共点一定在直线
上;
②若
在
上有定义,则
一定是偶函数;
③若
是偶函数,且
有解,则解的个数一定是偶数;
④若
是函数
的周期,则
,也是函数
的周期;
⑤
是函数
为奇函数的充分不必要条件。
从中任意抽取一个,恰好是真命题的概率为 ( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F为抛物线C:y2=2px(P>0)的焦点,过F垂直于x轴的直线被C截得的弦的长度为4.
(1)求抛物线C的方程.
(2)过点(m,0),且斜率为1的直线被抛物线C截得的弦为AB,若点F在以AB为直径的圆内,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,实数
满足
;
(1)当函数
的定义域为
时,求
的值域;
(2)求函数关系式
,并求函数
的定义域
;
(3)在(2)的结论中,对任意
,都存在
,使得
成立,求实数
的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,如果存在实数
(
,且
不同时成立),使得
对
恒成立,则称函数
为“
映像函数”.
(1)判断函数
是否是“
映像函数”,如果是,请求出相应的
的值,若不是,请说明理由;
(2)已知函数
是定义在
上的“
映像函数”,且当
时,
.求函数
(
)的反函数;
(3)在(2)的条件下,试构造一个数列
,使得当
时,
,并求
时,函数
的解析式,及
的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于在某个区间
上有意义的函数
,如果存在一次函数
使得对于任意的
,有
恒成立,则称函数
是函数
的一个弱渐近函数.
(1)若函数
是函数
在区间
上的一个弱渐近函数,求实数
的取值范围;
(2)证明:函数
是函数
在区间
上的弱渐近函数;
(3)试问:函数
与函数
(其中
为自然对数的底数)在区间
上是否存在相同的弱渐近函数?如果存在,请求出对应的弱渐近函数应满足的条件;如不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com