精英家教网 > 高中数学 > 题目详情
3.设正项等比数列的前n项和为Sn,若S3=3,S9-S6=12,则S6=9.

分析 根据正项等比数列{an}的前n项和的性质,Sn,S2n-Sn,S3n-S2n成等比数列,建立等式关系,解之即可.

解答 解:∵正项等比数列{an}的前n项和为Sn
∴S3,S6-S3,S9-S6成等比数列
即(S6-S32=S3•(S9-S6),
∴(S6-3)2=3×12解得S6=9或-3(正项等比数列可知-3舍去),
故答案为:9.

点评 本题主要考查了等比数列的前n项和,以及等比数列的性质,同时考查运算求解的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的首项a1=1,且an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$(n∈N*).
(1)证明:数列{$\frac{1}{{a}_{n}}$}是等差数列,并求数列{an}的通项公式;
(2)设bn=anan+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个非零向量.向量$\overrightarrow{a}$=(1,x),向量$\overrightarrow{b}$=(3,1).向量$\overrightarrow{a}⊥\overrightarrow{b}$,则x的值为(  )
A.$\frac{1}{3}$B.3C.$-\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知曲线${C_1}:{y^2}=tx(y>0,t>0)$在点$M(\frac{4}{t},2)$处的切线${C_2}:y={e^{x+1}}+1$与曲线也相切,则t的值为(  )
A.4eB.4e2C.$\frac{e^2}{4}$D.$\frac{e}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,$\overrightarrow{AB}=(1,\sqrt{3})$,$\overrightarrow{BC}=(3,0)$,则角B的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.从1到9的九个数字中取三个偶数四个奇数组成没有重复数字的七位数,试问:
(1)三个偶数排在一起的有几个?
(2)偶数排在一起、奇数也排在一起的有几个?
(3)任意两偶然都不相邻的七位数有几个?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若平面向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a|=\sqrt{2},|\overrightarrow b|=2,(\overrightarrow a-\overrightarrow b)⊥\overrightarrow a$
(1)求$\overrightarrow a$与$\overrightarrow b$的夹角θ;
(2)求$|2\overrightarrow a+\overrightarrow b|$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知定义在R上的函数f(x)满足f(-x)=f(x),且对于任意x1,x2∈[0,+∞),x1≠x2,均有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0.若f(-$\frac{1}{3}$)=$\frac{1}{2}$,2f(log${\;}_{\frac{1}{8}}$x)<1,则x的取值范围为(  )
A.(0,2)B.$({\frac{1}{2},+∞})$C.$({0,\frac{1}{2}})∪({2,+∞})$D.$({\frac{1}{2},1})∪({1,2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,椭圆C:x 2+3y 2=a2(a>0).
(Ⅰ) 求椭圆C的离心率;
(Ⅱ) 若a=$\sqrt{6}$,M,N是椭圆C上两点,且|MN|=2$\sqrt{3}$,求△MON面积的最大值.

查看答案和解析>>

同步练习册答案