| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
分析 利用平面向量的数量积公式求向量的夹角,注意向量夹角与三角形的内角的关系.
解答 解:由已知得到$\overrightarrow{BA}=(-1,-\sqrt{3})$,又$\overrightarrow{BC}=(3,0)$,
所以cosB=$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}||\overrightarrow{BC}|}=\frac{-3}{2×3}=-\frac{1}{2}$,则角B的大小为$\frac{2π}{3}$;
故选:C.
点评 本题考查了利用平面向量的数量积公式求三角形的内角;特别注意向量夹角与三角形的内角的关系.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com