【题目】设函数
.
(1)求函数
的单调区间和极值;
(2)若存在
满足
,证明
成立.
【答案】(1)当
时,
在
上单调递增没有极值;当
时,
在
上单调递增,
在
上单调递减,极小值为
;(2)证明见解析.
【解析】
(1)对函数进行求导得
,分为
和
两种情形判别导数与0的关系即可得结果;
(2)先得出
,结合(1)知
,设
,构造函数
,通过导数判断出
的单调性,可得出
,结合(1)中的单调性即可得出结果.
(1)由
得![]()
当
时,
从而得
在
上单调递增没有极值;
当
时,
得
;
得
;
得
;
在
上单调递增,
在
上单调递减,
此时有极小值
,无极大值.
(2)由
得:
,从而得![]()
由(1)知当
时,
从而得
在
上单调递增,所以此时不成立
可知此时
,由于
的极小值点为
,可设![]()
设![]()
![]()
,仅当
时取得“
”
所以
在
为单调递增函数且![]()
当
,时有
,即![]()
又由
,所以![]()
又由(1)知
在
上单调递减,且
,![]()
所以
从而得证
成立.
科目:高中数学 来源: 题型:
【题目】生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”. 为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须相邻安排的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系
中,已知直线
的参数方程为
(s为参数),以坐标原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为
,
,直线与曲线C交于A,B两点.
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)已知点P的极坐标为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(
)的离心率为
,且椭圆C的中心O关于直线
的对称点落在直线
上.
(1)求椭圆C的方程;
(2)设P
,M、N是椭圆C上关于x轴对称的任意两点,连接
交椭圆C于另一点E,求直线
的斜率取值范围,并证明直线
与x轴相交于定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
年新型冠状病毒疫情爆发,贵州省教育厅号召全体学生“停课不停学”.自
月
日起,高三年级学生通过收看“阳光校园·空中黔课”进行线上网络学习.为了检测线上网络学习效果,某中学随机抽取
名高三年级学生做“是否准时提交作业”的问卷调查,并组织了一场线上测试,调查发现有
名学生每天准时提交作业,根据他们的线上测试成绩得频率分布直方图(如图
所示);另外
名学生偶尔没有准时提交作业,根据他们的线上测试成绩得茎叶图(如图
所示,单位:分)
![]()
(1)成绩不低于
分为
等,低于
分为非
等.完成以下列联表,并判断是否有
以上的把握认为成绩取得
等与每天准时提交作业有关?
准时提交作业与成绩等次列联表 | 单位:人 | ||
A等 | 非A等 | 合计 | |
每天准时提交作业 | |||
偶尔没有准时提交作业 | |||
合计 | |||
(2)成绩低于
分为不合格,从这
名学生里成绩不合格的学生中再抽取
人,其中每天准时提交作业的学生人数为
,求
的分布列与数学期望.
附:![]()
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,点
的极坐标是
,曲线
的极坐标方程为
.以极点为坐标原点,极轴为
轴的正半轴建立平面直角坐标系,斜率为
的直线
经过点
.
(1)若
时,写出直线
和曲线
的直角坐标方程;
(2)若直线
和曲线
相交于不同的两点
,求线段
的中点
的在直角坐标系中的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】BMI指数(身体质量指数,英文为BodyMassIndex,简称BMI)是衡量人体胖瘦程度的一个标准,BMI=体重(kg)/身高(m)的平方.根据中国肥胖问题工作组标准,当BMI≥28时为肥胖.某地区随机调查了1200名35岁以上成人的身体健康状况,其中有200名高血压患者,被调查者的频率分布直方图如下:
![]()
(1)求被调查者中肥胖人群的BMI平均值
;
(2)填写下面列联表,并判断是否有99.9%的把握认为35岁以上成人患高血压与肥胖有关.
| 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
肥胖 | 不肥胖 | 合计 | |
高血压 | |||
非高血压 | |||
合计 |
附:
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为____;若该六面体内有一球,则该球体积的最大值为____.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com