【题目】在四棱锥
中,已知
平面
,
,点
为线段
的中点.
![]()
(1)求证:
平面
;
(2)求直线
与平面
所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】某校从2011年到2018年参加“北约”“华约”考试而获得加分的学生(每位学生只能参加“北约”“华约”中的一种考试)人数可以通过以下表格反映出来.(为了方便计算,将2011年编号为1,2012年编号为2,依此类推)
年份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
人数 | 2 | 3 | 4 | 4 | 7 | 7 | 6 | 6 |
(1)求这八年来,该校参加“北约”“华约”考试而获得加分的学生人数的中位数和方差;
(2)根据最近五年的数据,利用最小二乘法求出
与
之间的线性回归方程,并依此预测该校2019年参加“北约”“华约”考试而获得加分的学生人数.(结果要求四舍五入至个位)
参考公式:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某流行病爆发期间,某市卫生防疫部门给出的治疗方案中推荐了三种治疗药物
,
,
(
,
,
的使用是互斥且完备的),并且感染患者按规定都得到了药物治疗.患者在关于这三种药物的有关参数及市场调查数据如下表所示:(表中的数据都以一个疗程计)
|
|
|
|
单价(单位:元) | 600 | 1000 | 800 |
治愈率 |
|
|
|
市场使用量(单位:人) | 305 | 122 | 183 |
(Ⅰ)从感染患者中任取一人,试求其一个疗程被治愈的概率大约是多少?
(Ⅱ)试估算每名感染患者在一个疗程的药物治疗费用平均是多少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司以客户满意为出发点,随机抽选2000名客户,以调查问卷的形式分析影响客户满意度的各项因素.每名客户填写一个因素,下图为客户满意度分析的帕累托图.帕累托图用双直角坐标系表示,左边纵坐标表示频数,右边纵坐标表示频率,分析线表示累计频率,横坐标表示影响满意度的各项因素,按影响程度(即频数)的大小从左到右排列,以下结论正确的个数是( ).
![]()
①35.6%的客户认为态度良好影响他们的满意度;
②156位客户认为使用礼貌用语影响他们的满意度;
③最影响客户满意度的因素是电话接起快速;
④不超过10%的客户认为工单派发准确影响他们的满意度.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为提高产品质量,某企业质量管理部门经常不定期地对产品进行抽查检测,现对某条生产线上随机抽取的100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.
![]()
(1)求图中
的值,并求综合评分的中位数;
(2)用样本估计总体,视频率作为概率,在该条生产线中随机抽取3个产品,求所抽取的产品中一等品数的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,椭圆C:
(a>b>0)的离心率为
,右焦点到右准线的距离为3.
(1)求椭圆C的标准方程;
(2)过点P(0,1)的直线l与椭圆C交于两点A,B.己知在椭圆C上存在点Q,使得四边形OAQB是平行四边形,求Q的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线
:
经过伸缩变换
后得到曲线
.以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求出曲线
、
的参数方程;
(Ⅱ)若
、
分别是曲线
、
上的动点,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图平面PAC⊥平面ABC, AC⊥BC,PE// BC,M,N分别是AE,AP的中点,且△PAC是边长为2的等边三角形,BC=3,PE =2.
![]()
(1)求证:MN⊥平面PAC;
(2)求平面PAE与平面ABC夹角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com