【题目】已知函数
,其中
是自然对数的底数,
是函数
的导数.
(1)若
是
上的单调函数,求
的值;
(2)当
时,求证:若
,且
,则
.
【答案】(1)
,(2)证明见解析
【解析】
(1)对
求导,可得
,令
则
恒成立,由于
,所以
,即可求出结果.
(2)方法一:利用消元求导,由题意可得
,
令
,
,不妨设
,
,
令![]()
,
原题即证明当
时,
,利用导数在不等式中应用,即可求出结果.
方法二:利用切线放缩法,化解过程同方法一,原题即证明当
时,
,
,注意到
,求出
在
处的切线方程为
.下面证明
恒成立(
);令
,然后再利用导数在不等式中应用,和不等式放缩即可证明结果.
(1)
,
,由题意
恒成立,由于
,所以
,解得
.
方法一:消元求导死算
(2)![]()
,
令
,
,不妨设
,
,
令![]()
,
原题即证明当
时,
,![]()
![]()
,其中
,因为
,所以当
时,
,得证.
方法二:切线放缩
化解过程同上,原题即证明当
时,
,
,注意到
,求出
在
处的切线方程,则
,即
,则:切线方程为
.下面证明
恒成立(
);令
,则
,得
在
恒成立,故
在(
)上单调递增,
恒成立,故
恒成立,同理可证
始终位于
在
处的切线
的上方,即:
(实际上
与
关于
轴对称),故![]()
恒成立,原不等式得证.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为
(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为
,曲线C2的直角坐标方程为
.
(1)若直线l与曲线C1交于M、N两点,求线段MN的长度;
(2)若直线l与x轴,y轴分别交于A、B两点,点P在曲线C2上,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对数列
,规定
为数列
的一阶差分数列,其中
,规定
为
的二阶差分数列,其中
.
(1)数列
的通项公式
,试判断
,
是否为等差数列,请说明理由?
(2)数列
是公比为
的正项等比数列,且
,对于任意的
,都存在
,使得
,求
所有可能的取值构成的集合;
(3)各项均为正数的数列
的前
项和为
,且
,对满足
,
的任意正整数
、
、
,都有
,且不等式
恒成立,求实数
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业拟对某条生产线进行技术升级,现有两种方案可供选择:方案
是报废原有生产线,重建一条新的生产线;方案
是对原有生产线进行技术改造.由于受诸多不可控因素的影响,市场销售状态可能会发生变化.该企业管理者对历年产品销售市场行情及回报率进行了调研,编制出下表:
市场销售状态 | 畅销 | 平销 | 滞销 | |
市场销售状态概率 |
|
|
| |
预期平均年利润(单位:万元) | 方案 | 700 | 400 |
|
方案 | 600 | 300 |
| |
(1)以预期平均年利润的期望值为决策依据,问:该企业应选择哪种方案?
(2)记该生产线升级后的产品(以下简称“新产品”)的年产量为
(万件),通过核算,实行方案
时新产品的年度总成本
(万元)为
,实行方案时新产品的年度总成本
(万元)为
.已知
,
.若按(1)的标准选择方案,则市场行情为畅销、平销和滞销时,新产品的单价
(元)分别为60,
,
,且生产的新产品当年都能卖出去.试问:当
取何值时,新产品年利润
的期望取得最大值?并判断这一年利润能否达到预期目标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形
中,
,
,
为
的中点,点
,
分别在线段
,
上运动(其中
不与
,
重合,
不与
,
重合),且
,沿
将
折起,得到三棱锥
,则三棱锥
体积的最大值为__________;当三棱锥
体积最大时,其外接球的表面积的值为_______________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】呼和浩特市地铁一号线于2019年12月29日开始正式运营有关部门通过价格听证会,拟定地铁票价后又进行了一次调查.调查随机抽查了50人,他们的月收入情况与对地铁票价格态度如下表:
月收入(单位:百元) |
|
|
|
|
|
|
认为票价合理的人数 | 1 | 2 | 3 | 5 | 3 | 4 |
认为票价偏高的人数 | 4 | 8 | 12 | 5 | 2 | 1 |
(1)若以区间的中点值作为月收入在该区间内人的人均月收入求参与调查的人员中“认为票价合理者”的月平均收入与“认为票价偏高者”的月平均收入的差是多少(结果保留2位小数);
(2)由以上统计数据填写下面
列联表分析是否有
的把握认为“月收入以5500元为分界点对地铁票价的态度有差异”
月收入不低于5500元人数 | 月收入低于5500元人数 | 合计 | |
认为票价偏高者 | |||
认为票价合理者 | |||
合计 |
附:![]()
| 0.05 | 0.01 |
| 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体
中,
,
分别是棱
,
的中点,点
在对角线
上运动.当
的面积取得最小值时,点
的位置是( )
![]()
A.线段
的三等分点,且靠近点
B.线段
的中点
C.线段
的三等分点,且靠近点
D.线段
的四等分点,且靠近点![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.
方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.
方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.
(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;
(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com