精英家教网 > 高中数学 > 题目详情

【题目】已知命题p:不等式2x﹣x2<m对一切实数x恒成立,命题q:m2﹣2m﹣3≥0,如果¬p与“p∧q”同时为假命题,求实数m的取值范围.

【答案】解:根据命题p:不等式2x﹣x2<m对一切实数x恒成立,得m>﹣x2+2x=﹣(x﹣1)2+1恒成立,
∴m>1,
根据命题q:m2﹣2m﹣3≥0,得
x≤﹣1或x≥3,
∵¬p与“p∧q”同时为假命题,
∴p为真命题,q为假命题,

∴1<m<3,
∴实数m的取值范围(1,3)
【解析】首先,求解所给命题都是真命题时,m的取值情况,然后,结合条件求解即可.
【考点精析】关于本题考查的复合命题的真假,需要了解“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+3x+a
(1)当a=﹣2时,求不等式f(x)>2的解集
(2)若对任意的x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.

(1)求证:AC⊥BC1
(2)求证:AC1∥平面CDB1
(3)求二面角B﹣DC﹣B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒中有6只灯泡,其中有2只是次品,4只是正品.从中任取2只,试求下列事件的概率.
(Ⅰ)取到的2只都是次品;
(Ⅱ)取到的2只中恰有一只次品.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2ax+5(a>1),
(1)若f(x)的定义域和值域均是[1,a],求实数a的值;
(2)若f(x)在区间(﹣∞,2]上是减函数,且对任意的x∈[1,a+1],都有f(x)≤0,求实数a的取值范围;
(3)若g(x)=2x+log2(x+1),且对任意的x∈[0,1],都存在x0∈[0,1],使得f(x0)=g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次水下考古活动中,某一潜水员需潜水50米到水底进行考古作业,其用氧量包含以下三个方面:

①下潜平均速度为米/分钟,每分钟的用氧量为升;

②水底作业时间范围是最少10分钟最多20分钟,每分钟用氧量为0.3升;

③返回水面时,平均速度为米/分钟,每分钟用氧量为0.32升;潜水员在此次考古活动中的总用氧量为升.

(1)如果水底作业时间是10分钟,将表示为的函数;

(2)若,水底作业时间为20分钟,求总用氧量的取值范围;

(3)若潜水员携带氧气13.5升,请问潜水员最多在水下多少分钟(结果取整数)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上任意一点到直线的距离比到点的距离大1.

(1)求曲线的方程;

(2)过曲线的焦点,且倾斜角为的直线交于点轴上方), 的准线,点上且,到直线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,2,在Rt△ABC中,AB=BC=4,点E在线段AB上,过点E作交AC于点F,将△AEF沿EF折起到△PEF的位置(点A与P重合),使得∠PEB=60°.

(1)求证:EF⊥PB;
(2)试问:当点E在何处时,四棱锥P﹣EFCB的侧面的面积最大?并求此时四棱锥P﹣EFCB的体积及直线PC与平面EFCB所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,求函数的单调区间;

,则当时,函数的图像是否总存在直线上方?请写出判断过程.

查看答案和解析>>

同步练习册答案