【题目】造纸术是我国古代四大发明之一,纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸.现在我国采用国际标准,规定以
、
、…、
;
、
、…、
等标记来表示纸张的幅面规格.复印纸幅面规格只采用
系列和
系列,共中
系列的幅面规格为:①
规格的纸张的幅宽(以
表示)和长度(以
表示)的比例关系为
;②将
纸张沿长度方向对开成两等分,便成为
规格,
纸张沿长度方向对开成两等分,便成为
规格,…,如此对开至
规格.现有
、
、
、…、
纸各一张.若
纸的面积为
.则这9张纸的面积之和等于__________
.
科目:高中数学 来源: 题型:
【题目】已知抛物线
与直线l:y=kx﹣1无交点,设点P为直线l上的动点,过P作抛物线C的两条切线,A,B为切点.
![]()
(1)证明:直线AB恒过定点Q;
(2)试求△PAB面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为
(
为参数),直线l的参数方程为
(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,射线m:
.
(1)求C和l的极坐标方程;
(2)设m与C和l分别交于异于原点的A,B两点,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于圆周率
,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计
的值:先请120名同学每人随机写下一个x,y都小于1的正实数对
,再统计其中x,y能与1构成钝角三角形三边的数对
的个数m,最后根据统计个数m估计
的值.如果统计结果是
,那么可以估计
的值为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.
![]()
(1)求图中
的值,并求综合评分的中位数;
(2)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中恰有一个一等品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(
,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(
)又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足
.其中星等为
的星的亮度为
.已知“心宿二”的星等是1.00.“天津四” 的星等是1.25.“心宿二”的亮度是“天津四”的
倍,则与
最接近的是(当
较小时,
)
A.1.24B.1.25C.1.26D.1.27
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(其中
为参数,且
,在以
为极点、
轴的非负半轴为极轴的极坐标系(两种坐标系取相同的单位长度)中,曲线
的极坐标方程为
,设直线
经过定点
,且与曲线
交于
、
两点.
(Ⅰ)求点
的直角坐标及曲线
的直角坐标方程;
(Ⅱ)求证:不论
为何值时,
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:椭圆
的离心率为
,且
,过左焦点
作一条直线交椭圆于
、
两点,过线段
的中点
作
的垂线交
轴于点
.
![]()
(1)求椭圆方程;
(2)当
面积最大时,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数).以坐标原点
为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的普通方程和
的直角坐标方程;
(2)过点
作倾斜角为
的直线
交
于
两点,过
作与
平行的直线
交
于
点,若
,求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com