精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论函数的极值;

2)是否存在实数,使得不等式上恒成立?若存在,求出的最小值:若不存在,请说明理由.

【答案】1)答案不唯一,具体见解析(2)存在;的最小值是1

【解析】

1)对(或)是否恒成立分类讨论,若恒成立,没有极值点,若不恒成立,求出的解,即可求出结论;

2)令,可证恒成立,而,由(2)得,为减函数,上单调递减,在都存在,不满足,当时,设,且,只需求出单调递增时的取值范围即可.

1)由题知,

①当时,,所以上单调递减,没有极值;

②当时,令,得

时,单调递减,

时,单调递增,

处取得极小值,无极大值.

2)不妨令

恒成立,

单调递增,

恒成立,

所以当时,

由(1)知,当时,上单调递减,

恒成立;

所以若要不等式上恒成立,只能.

时,,由(1)知,上单调递减,

所以,不满足题意.

时,设

因为,所以

所以上单调递增,又

所以当时,恒成立,即恒成立,

故存在,使得不等式上恒成立.

此时的最小值是1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校从学生会宣传部6名成员(其中男生4人,女生2)中,任选3人参加某省举办的我看中国改革开放三十年演讲比赛活动.

(1)设所选3人中女生人数为ξ,求ξ的分布列;

(2)求男生甲或女生乙被选中的概率;

(3)男生甲被选中为事件A女生乙被选中为事件B,求P(B)P(B|A)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,上、下顶点分别是,上、下焦点分别是,焦距为,点在椭圆上.

1)求椭圆的方程;

2)若为椭圆上异于的动点,过作与轴平行的直线,直线交于点,直线与直线交于点,判断是否为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从数列中取出部分项组成的数列称为数列子数列”.

1)若等差数列的公差,其子数列恰为等比数列,其中,求

2)若,判断数列是否为子数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数β=x+yixyR)与复平面上点Pxy)对应.

1)若β是关于t的一元二次方程t22t+m=0mR)的一个虚根,且|β|=2,求实数m的值;

2)设复数β满足条件|β+3|+(﹣1n|β3|=3a+(﹣1na(其中nN*、常数),当n为奇数时,动点Pxy)的轨迹为C1.当n为偶数时,动点Pxy)的轨迹为C2.且两条曲线都经过点,求轨迹C1C2的方程;

3)在(2)的条件下,轨迹C2上存在点A,使点A与点Bx00)(x00)的最小距离不小于,求实数x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处有极值

1)求的解析式;

2)若关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数有两个不同的零点

I)证明:

(Ⅱ)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某工厂生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(1)求这1000件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表)

(2)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中以近似为样本平均数近似为样本方差

(ⅰ)利用该正态分布,求

(ⅱ)某用户从该工厂购买了100件这种产品,记表示这100件产品中质量指标值为于区间(127.6,140)的产品件数,利用(ⅰ)的结果,求

附:.若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线x=﹣2上有一动点Q,过点Q作直线l,垂直于y轴,动点P在l1上,且满足(O为坐标原点),记点P的轨迹为C.

(1)求曲线C的方程;

(2)已知定点M(,0),N(,0),点A为曲线C上一点,直线AM交曲线C于另一点B,且点A在线段MB上,直线AN交曲线C于另一点D,求△MBD的内切圆半径r的取值范围.

查看答案和解析>>

同步练习册答案