精英家教网 > 高中数学 > 题目详情

【题目】历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种值的表达式纷纷出现,使得值的计算精度也迅速增加.华理斯在1655年求出一个公式:,根据该公式绘制出了估计圆周率的近似值的程序框图,如下图所示,执行该程序框图,已知输出的,若判断框内填入的条件为,则正整数的最小值是

A.B.C.D.

【答案】B

【解析】

初始:,第一次循环:,继续循环;

第二次循环:,此时,满足条件,结束循环,

所以判断框内填入的条件可以是,所以正整数的最小值是3,故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C方程为,椭圆中心在原点,焦点在x轴上.

1)证明圆C恒过一定点M,并求此定点M的坐标;

2)判断直线与圆C的位置关系,并证明你的结论;

3)当时,圆C与椭圆的左准线相切,且椭圆过(1)中的点M,求此时椭圆方程;在x轴上是否存在两定点AB使得对椭圆上任意一点Q(异于长轴端点),直线的斜率之积为定值?若存在,求出AB坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在上任意一点处的切线,若过右焦点的直线交椭圆两点,已知在点处切线相交于.

(Ⅰ)求点的轨迹方程;

(Ⅱ)①若过点且与直线垂直的直线(斜率存在且不为零)交椭圆两点,证明为定值.

②四边形的面积是否有最小值,若有请求出最小值;若没有请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业质量检验员为了检测生产线上零件的情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:

1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);

2)已知尺寸在上的零件为一等品,否则为二等品. 将这个零件尺寸的样本频率视为概率,从生产线上随机抽取个零件,试估计所抽取的零件是二等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,直线将矩形纸分为两个直角梯形,将梯形沿边翻折,如图2,在翻折的过程中(平面和平面不重合),下面说法正确的是

图1 图2

A.存在某一位置,使得平面

B.存在某一位置,使得平面

C.在翻折的过程中,平面恒成立

D.在翻折的过程中,平面恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆E1(a>b>0)的左、右焦点分别为F1F2,过点F1的直线交椭圆EAB两点.若椭圆E的离心率为三角形ABF2的周长为4.

1)求椭圆E的方程;

2)设不经过椭圆的中心而平行于弦AB的直线交椭圆E于点CD,设弦ABCD的中点分别为MN,证明:OMN三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx3,gx)=alnx2xaR.

1)讨论gx)的单调性;

2)是否存在实数a,使不等式fxgx)恒成立?如果存在,求出a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为研究学生网上学习的情况,某校社团对男女各10名学生进行了网上在线学习的问卷调查,每名学生给出评分(满分100分),得到如图所示的茎叶图.

1)根据茎叶图判断男生组和女生组哪个组对网课的评价更高?并说明理由;

2)如图是按该20名学生的评分绘制的频率分布直方图,求的值并估计这20名学生评分的平均值(同一组中的数据用该组区间中点值作为代表);

3)求该20名学生评分的中位数,并将评分超过和不超过的学生数填入下面的列联表:

超过

不超过

男生

女生

根据列联表,能否有的把握认为男生和女生的评分有差异?

附:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,设内角的对边分别为,且.

1)若成等比数列,求证:

2)若为锐角),.边上的高.

查看答案和解析>>

同步练习册答案