【题目】已知长轴长为
的椭圆C:
的左、右焦点分别为F1、F2,且以F1、F2为直径的圆与C恰有两个公共点.
(1)求椭圆C的方程;
(2)若经过点F2的直线l与C交于M,N两点,且M,N关于原点O的对称点分别为P,Q,求四边形MNPQ面积的最大值.
【答案】(1)
y2=1(2)2![]()
【解析】
(1)由题意可得
的值及
,再由
,
,
之间的关系求出
,进而求出椭圆的方程;
(2)由(1)可得右焦点
的坐标,由题意可得直线
的斜率不为0,设直线
的方程与椭圆联立求出两根之和及两根之积,由题意可得四边形
为平行四边形,所以四边形的面积等于一个三角形面积的4倍,求出三角形
的面积,由均值不等式可得面积的最大值.
解:(1)由题意可得
,且
,又
,所以可得
,
,
所以椭圆的方程为:
;
(2)由(1)可得右焦点
,再由题意可得直线
的斜率不为0,设直线
的方程为
,
设
,
,
,
,联立直线与椭圆的方程可得
整理可得
,所以
,
,
由题意可得四边形
为平行四边形,
所以![]()
![]()
![]()
![]()
![]()
,
当且仅当
即
时取等号,
所以四边形
面积的最大值为
.
![]()
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
的参数方程:
(
为参数),以坐标原点为极点,以
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的普通方程;
(2)过曲线
上一点
作直线
与曲线
交于
两点,中点为
,
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准
(吨),用水量不超过
的部分按平价收费,超过
的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照
分成9组,制成了如图所示的频率分布直方图.
![]()
(Ⅰ)若全市居民中月均用水量不低于3吨的人数为3.6万,试估计全市有多少居民?并说明理由;
(Ⅱ)若该市政府拟采取分层抽样的方法在用水量吨数为
和
之间选取7户居民作为议价水费价格听证会的代表,并决定会后从这7户家庭中按抽签方式选出4户颁发“低碳环保家庭”奖,设
为用水量吨数在
中的获奖的家庭数,
为用水量吨数在
中的获奖家庭数,记随机变量
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为比较甲,乙两地某月
时的气温,随机选取该月中的
天,将这
天中
时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:①甲地该月
时的平均气温低于乙地该月
时的平均气温;②甲地该月
时的平均气温高于乙地该月
时的平均气温;③甲地该月
时的气温的中位数小于乙地该月
时的气温的中位数;④甲地该月
时的气温的中位数大于乙地该月
时的气温的中位数.其中根据茎叶图能得到的正确结论的编号为( )
![]()
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是直角梯形,
∥
,
,
是等边三角形,侧面
底面
,
,
,
,点
是棱
上靠近点
的一个三等分点.
![]()
(1)求证:
∥平面
;
(2)设点
是线段
(含端点)上的动点,若直线
与底面
所成的角的正弦值为
,求线段
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱中ABC—A1B1C1,ABAC,AB=3,AC=4,B1CAC1.
![]()
(1)求AA1的长;
(2)试判断在侧棱BB1上是否存在点P,使得直线PC与平面AA1C1C所成角和二面角B—A1C—A的大小相等,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
,
为椭圆上任意一点,当
时,
的面积为
,且
.
(1)求椭圆
的方程;
(2)已知直线
经点
,与椭圆
交于不同的两点
、
,且
,求直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com