【题目】【2017北京丰台5月综合测试】已知函数
.
(Ⅰ)当
时,求曲线
在点
处的切线方程;
(Ⅱ)证明:对于
,
在区间
上有极小值,且极小值大于0.
【答案】(1)
(2)见解析
【解析】
(Ⅰ)
的定义域为
,
因为
,所以
,所以
.
因为
,
,
所以曲线
在点
处的切线方程为
.
(Ⅱ)因为
,所以
在区间
上是单调递增函数.
因为
,
,
所以
,使得
.
所以
,
;
,
,
故
在
上单调递减,在
上单调递增,
所以
有极小值
.
因为
,
所以
.
设
,
,
则
,
所以
,即
在
上单调递减,所以
,
即
,所以函数
的极小值大于0.
点睛:本题考查导数的几何意义以及函数的单调性与极值问题.函数y=f(x)在x=x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,y0)处的切线的斜率
,过点P的切线方程为:
.求函数y=f(x)在点P(x0,y0)处的切线方程与求函数y=f(x)过点P(x0,y0)的切线方程意义不同,前者切线有且只有一条,且方程为y-y0=f′(x0)(x-x0),后者可能不只一条.
科目:高中数学 来源: 题型:
【题目】已知命题p:函数
在区间(m,m+1)上单调递减,命题q:实数m满足方程
表示的焦点在y轴上的椭圆.
(1)当p为真命题时,求m的取值范围;
(2)若命题“p且q”为假命题,“p或q”为真命题,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】建造一间地面面积为12m2的背面靠墙的猪圈,底面为长方形的猪圈正面的造价为120元/m2 , 侧面的造价为80元/m2 , 屋顶造价为1120元.如果墙高3m,且不计猪圈背面的费用,问怎样设计能使猪圈的总造价最低,最低总造价是多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017安徽阜阳二模】一企业从某生产线上随机抽取
件产品,测量这些产品的某项技术指标值
,得到的频率分布直方图如图.
![]()
(1)估计该技术指标值
平均数
;
(2)在直方图的技术指标值分组中,以
落入各区间的频率作为
取该区间值的频率,若
,则产品不合格,现该企业每天从该生产线上随机抽取
件产品检测,记不合格产品的个数为
,求
的数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
=(1,2),
=(x,1);
(1)若(
+2
)⊥(2
﹣
)时,求x的值;
(2)若向量
与向量
的夹角为锐角,求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1 , 则异面直线BA1与AC1所成的角等于( )![]()
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某通讯公司需要在三角形地带OAC区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域BOC内,乙中转站建在区域AOB内.分界线OB固定,且OB=(1+
)百米,边界线AC始终过点B,边界线OA、OC满足∠AOC=75°,∠AOB=30°,∠BOC=45°.设OA=x(3≤x≤6)百米,OC=y百米.![]()
(1)试将y表示成x的函数,并求出函数y的解析式;
(2)当x取何值时?整个中转站的占地面积S△OAC最小,并求出其面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017南通一模】(本题满分16分)如图,某机械厂要将长6m,宽2m的长方形铁皮ABCD进行裁剪。已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC于点P),再沿直线PE裁剪。
(1)当
时,试判断四边形MNPE的形状,并求其面积;
(2)若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com