【题目】
,设![]()
(Ⅰ)求函数
的周期及单调增区间。
(Ⅱ)设
的内角
的对边分别为
,已知
,求边
的值.
【答案】单调递增区间是[2k
],周期T=2
;(Ⅱ)![]()
【解析】
此题考查了正弦、余弦定理,三角函数的周期性及其求法,以及三角函数的恒等变换应用,涉及的知识有:两角和与差的正弦函数公式,二倍角的余弦函数公式,正弦函数的单调性,同角三角函数间的基本关系,以及三角形的边角关系,熟练掌握定理及公式是解本题的关键。
(1)(1)由两向量的坐标,利用平面向量的数量积运算法则列出关系式,再利用两角和与差的直正弦函数公式及二倍角的余弦函数公式化简,整理后得到一个角的正弦函数,找出ω的值,代入周期公式,即可求出函数的最小正周期;根据正弦函数的单调递减区间列出关于x的不等式,求出不等式的解集即可得到函数的递减区间;
(2)由
,
得![]()
由
得
.又
结合余弦定理得到结论。
![]()
=![]()
=![]()
![]()
x+![]()
![]()
……即2k![]()
……
所以…函数的单调递增区间是[2k
],
周期T=2
6分
(Ⅱ)由
,
得![]()
由
得
.又![]()
由
得![]()
,
…………………………12分
科目:高中数学 来源: 题型:
【题目】已知函数
,函数g(x)=2﹣f(﹣x).
(1)判断函数g(x)的奇偶性;
(2)若x∈(﹣1,0),
①求f(x)的值域;
②g(x)<tf(x)恒成立,求实数t的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
的离心率为
,短轴长为2.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设P为椭圆上顶点,点A是椭圆C上异于顶点的任意一点,直线
交x轴于点M,点B与点A关于x轴对称,直线
交x轴于点N.问:在y轴的正半轴上是否存在点Q,使得
?若存在,求点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了迎接2000年的到来,某地组织了一次乒乓球迎春幸运赛.首先,通过身份号抽选出2000名选手,编号为1,2,…,2000,他们当中任两人都可以组成一对双打选手,每对选手的编号之和称为他们的“和号”.规定:“和号”相同的两对选手方有资格进行幸运双打赛.比赛开始前,组委会首先从2000个编号中随机抽出65名幸运选手,然后找出“和号”相同的两对选手进行幸运双打赛(凡同一“和号”的选手分在同一区进行单循环).求证:无论怎样抽选,总有选手进行幸运赛.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中点.
![]()
(1)求证:AE⊥B1C;
(2)求异面直线AE与A1C所成的角的大小;
(3)若G为C1C中点,求二面角C-AG-E的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若四面体
的三组对棱分别相等,即
,
,
,给出下列结论:
①四面体
每组对棱相互垂直;
②四面体
每个面的面积相等;
③从四面体
每个顶点出发的三条棱两两夹角之和大于
而小于
;
④连接四面体
每组对棱中点的线段相互垂直平分;
⑤从四面体
每个顶点出发的三条棱的长可作为一个三角形的三边长.
其中正确结论的个数是( )
A.2个B.3个C.4个D.5个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】五一放假期间高速公路免费是让实惠给老百姓,但也容易造成交通堵塞.在某高速公路上的某时间段内车流量
(单位:千辆/小时)与汽车的平均速度
(单位:千米/小时)之间满足的函数关系
(
为常数),当汽车的平均速度为
千米/小时时,车流量为
千辆/小时.
(1)在该时间段内,当汽车的平均速度
为多少时车流量
达到最大值?
(2)为保证在该时间段内车流量至少为
千辆/小时,则汽车的平均速度应控制在什么范围内?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com