【题目】近年来,昆明加大了特色农业建设,其中花卉产业是重要组成部分.昆明斗南毗邻滇池东岸,是著名的花都,有“全国10支鲜花7支产自斗南”之说,享有“金斗南”的美誉。对斗南花卉交易市场某个品种的玫瑰花日销售情况进行调研,得到这种玫瑰花的定价
(单位:元/扎,20支/扎)和销售率
(销售率是销售量与供应量的比值)的统计数据如下:
| 10 | 20 | 30 | 40 | 50 | 60 |
| 0.9 | 0.65 | 0.45 | 0.3 | 0.2 | 0.175 |
(1)设
,根据所给参考数据判断,回归模型
与
哪个更合适,并根据你的判断结果求回归方程(
、
的结果保留一位小数);
(2)某家花卉公司每天向斗南花卉交易市场提供该品种玫瑰花1200扎,根据(1)中的回归方程,估计定价
(单位:元/扎)为多少时,这家公司该品种玫瑰花的日销售额
(单位:元)最大,并求
的最大值。
参考数据:
与
的相关系数
,
与
的相关系数
,
,
,
,
,
,
,
,
,
,
,
.
参考公式:
,
,
.
科目:高中数学 来源: 题型:
【题目】凤鸣山中学的高中女生体重
(单位:kg)与身高
(单位:cm)具有线性相关关系,根据一组样本数据
(
),用最小二乘法近似得到回归直线方程为
,则下列结论中不正确的是( )
A.
与
具有正线性相关关系
B.回归直线过样本的中心点![]()
C.若该中学某高中女生身高增加1cm,则其体重约增加0.85kg
D.若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若
,
,求
的值域;
(2)当
时,求
的最小值
;
(3)是否存在实数
、
,同时满足下列条件:①
;② 当
的定义域为
时,其值域为
.若存在,求出
、
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列六个命题:
(1)若
,则函数
的图像关于直线
对称.
(2)
与
的图像关于直线
对称.
(3)
的反函数与
是相同的函数.
(4)
无最大值也无最小值.
(5)
的最小正周期为
.
(6)
有对称轴两条,对称中心有三个.
则正确命题的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C经过点
,且圆心
在直线
上,又直线
与圆C交于P,Q两点.
(1)求圆C的方程;
(2)若
,求实数
的值;
(3)过点
作直线
,且
交圆C于M,N两点,求四边形
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】上海市松江区天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”.兴趣小组同学实施如下方案来测量塔的倾斜度和塔高:如图,记O点为塔基、P点为塔尖、点P在地面上的射影为点H.在塔身OP射影所在直线上选点A,使仰角∠HAP=45°,过O点与OA成120°的地面上选B点,使仰角∠HPB=45°(点A、B、O都在同一水平面上),此时测得∠OAB=27°,A与B之间距离为33.6米.试求:
![]()
(1)塔高(即线段PH的长,精确到0.1米);
(2)塔身的倾斜度(即PO与PH的夹角,精确到0.1°).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,平面
平面
,四边形
为正方形,△
为等边三角形,
是
中点,平面
与棱
交于点
.
(Ⅰ)求证:
;
(Ⅱ)求证:
平面
;
(III)记四棱锥
的体积为
,四棱锥
的体积为
,直接写出
的值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,下列
个结论正确的是__________(把你认为正确的答案全部写上).
(1)任取
,都有
;
(2)函数
在
上单调递增;
(3)
,对一切
恒成立;
(4)函数
有
个零点;
(5)若关于
的方程
有且只有两个不同的实根
,
,则
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com