【题目】如图,在四棱锥P-ABCD中,底面ABCD为菱形且∠DAB=60°,O为AD中点.
![]()
(Ⅰ)若PA=PD,求证:平面POB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,试问在线段PC上是否存在点M,使二面角M-BO-C的大小为30°,如存在,求
的值,如不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】从某居民区随机抽取10个家庭,获得第
个家庭的月收入
(单位:千元)与月储蓄
(单位:千元)的数据资料,算得
,
,
,
.
(1)求家庭的月储蓄
对月收入
的线性回归方程
;
(2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
(附:线性回归方程
中,
,其中
,
为样本平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.
镇有基层干部60人,
镇有基层干部60人,
镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从
三镇共选40名基层干部,统计他们走访贫困户的数量,并将走访数量分成5组,
,绘制成如图所示的频率分布直方图.
![]()
(1)求这40人中有多少人来自
镇,并估计
三镇的基层干部平均每人走访多少贫困户;(同一组中的数据用该组区间的中点值作代表)
(2)如果把走访贫困户达到或超过25户视为工作出色,以频率估计概率,从
三镇的所有基层干部中随机选取3人,记这3人中工作出色的人数为
,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+sin x,x∈(-1,1),则满足f(a2-1)+f(a-1)>0的a的取值范围是( )
A. (0,2)B. (1,
)C. (1,2)D. (0,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市
户居民的月平均用电量(单位:度),以
,
,
,
,
,
,
分组的频率分布直方图如图.
![]()
(1)求直方图中
的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为
,
,
,
的四组用户中,用分层抽样的方法抽取
户居民,则月平均用电量在
的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
,过其焦点
作斜率为1的直线交抛物线
于
,
两点,且线段
的中点的纵坐标为4.
(1)求抛物线
的标准方程;
(2)若不过原点
且斜率存在的直线
与抛物线
相交于
、
两点,且
.求证:直线
过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计时,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差.某高二班主任为了了解学生的偏科情况,对学生数学偏差
(单位:分)与历史偏差
(单位:分)之间的关系进行学科偏差分析,决定从全班52位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如下:
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学偏差 | 20 | 15 | 13 | 3 | 2 |
|
|
|
历史偏差 |
|
|
|
|
|
|
|
|
(1)已知
与
之间具有线性相关关系,求
关于
的线性回归方程
;
(2)若这次考试该班数学平均分为118分,历史平均分为
,试预测数学成绩126分的同学的历史成绩.
附:参考公式与参考数据
,
,
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com