【题目】设数列
,
及函数
(
),
(
).
(1)若等比数列
满足
,
,
,求数列
的前
(
)项和;
(2)已知等差数列
满足
,
,
(
、
均为常数,
,且
),
(
).试求实数对(
,
),使得
成等比数列.
科目:高中数学 来源: 题型:
【题目】对于定义域为
的函数
,如果同时满足以下三个条件:①任意的
,总有
;②
;③若
,
,
,总有
成立,则称函数
为理想函数.
(1)证明:若函数
为理想函数,则
;
(2)证明:函数
,
是理想函数;
(3)证明:若函数
为理想函数,假定存在
,使得
且
,则
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=(ax2-2x)ex,其中a≥0.
(1)当a=
时,求f(x)的极值点;
(2)若f(x)在[-1,1]上为单调函数,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市的华为手机专卖店对该市市民使用华为手机的情况进行调查.在使用华为手机的用户中,随机抽取100名,按年龄(单位:岁)进行统计的频率分布直方图如图:
![]()
(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);
(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,再从这20人中年龄在
和
的人群里,随机选取2人各赠送一部华为手机,求这2名市民年龄都在
内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
的参数方程是
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程是
.
(1)写出
的极坐标方程和
的直角坐标方程;
(2)已知点
、
的极坐标分别为
和
,直线
与曲线
相交于
,
两点,射线
与曲线
相交于点
,射线
与曲线
相交于点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
![]()
(Ⅰ)证明MN∥平面PAB;
(Ⅱ)求直线AN与平面PMN所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com