解:(1)依题意知. ∴s=. ---3分 (2)的取值可以是0.1.2.----------5分 甲.乙两人命中10环的次数均为0次的概率是. 甲.乙两人命中10环的次数均为1次的概率是. 甲.乙两人命中10环的次数均为2次的概率是. ∴(=0)=. ----8分 甲命中10环的次数为2次且乙命中10环的次数为0次的概率是. 甲命中10环的次数为0次且乙命中10环的次数为2次的概率是.∴(=2)==. --11分 ∴(=1)=1(=0)(=2)=. --14分 查看更多

 

题目列表(包括答案和解析)

下列推理是否正确,将有错误的指出错误之处.

(1)求证:四边形的内角和等于360°.

证明:设四边形ABCD为矩形,则四个角都是直角.

∴∠A+∠B+∠C+D=90°+90°+90°+90°=360°.

∴四边形的内角和为360°.

(2)已知是无理数,试证:也是无理数.

证明:依题意知都是无理数,而无理数与无理数的和是无理数,所以也必是无理数.

(3)在Rt△ABC中,∠C=90°,求证:a2+b2=c2

证明:∵a=csinA,b=ccosA,

∴a2+b2=c2sin2A+c2cos2A=c2(sin2A+cos2A)=c2

查看答案和解析>>

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

 D

[解析] 依题意得0<a<1,于是由f(1-)>1得loga(1-)>logaa,0<1-<a,由此解得1<x<,因此不等式f(1-)>1的解集是(1,),选D.

查看答案和解析>>

设函数f(x)=在[1,+∞上为增函数.  

(1)求正实数a的取值范围;

(2)比较的大小,说明理由;

(3)求证:(n∈N*, n≥2)

【解析】第一问中,利用

解:(1)由已知:,依题意得:≥0对x∈[1,+∞恒成立

∴ax-1≥0对x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

(2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上为增函数,

∴n≥2时:f()=

  

 (3)  ∵   ∴

 

查看答案和解析>>


同步练习册答案