已知.则取最大值时的值是 A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

已知点G是△ABC的重心,A(0,-1),B(0,1).在x轴上有一点M,满足|
MA
|=|
MC
|
GM
AB
(λ∈R)
(若△ABC的顶点坐标为A(x1,y1),B(x2,y2),C(x3,y3),则该三角形的重心坐标为G(
x1+x2+x3
3
y1+y2+y3
3
)
).
(1)求点C的轨迹E的方程.
(2)设(1)中曲线E的左、右焦点分别为F1、F2,过点F2的直线l交曲线E于P、Q两点,求△F1PQ面积的最大值,并求出取最大值时直线l的方程.

查看答案和解析>>

已知函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,-π<φ≤π.若函数f(x)的最小正周期为6π,且当x=
π
2
时,f(x)取得最大值,则(  )
A、f(x)在区间[-2π,0]上是增函数
B、f(x)在区间[-3π,-π]上是增函数
C、f(x)在区间[3π,5π]上是减函数
D、f(x)在区间[4π,6π]上是减函数

查看答案和解析>>

已知实数x,y满足线性约束条件
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,目标函数z=y-ax(a∈R),若z取最大值时的唯一最优解是(1,3),则实数a的取值范围是(  )
A、(0,1)
B、(-1,0)
C、(1,+∞)
D、(-∞,-1)

查看答案和解析>>

已知函数f(x)=Asinωx+Bcosωx(其中A、B、ω是非零常数,且ω>0)的最小正周期为2,且当x=
1
3
时,f(x)取得最大值2.
(1)求函数f(x)的表达式;
(2)求函数f(x+
1
6
)的单调递增区间,并指出该函数的图象可以由函数y=2sinx,x∈R的图象经过怎样的变换得到?
(3)在闭区间[
21
4
23
4
]上是否存在f(x)的对称轴?如果存在,求出其对称轴方程;如果不存在,则说明理由.

查看答案和解析>>

已知数列{an}的前n项和为Sna1=1,a4=8,Sn=b•qn+c(q≠0,q≠±1,bc≠0,b+c=0),现把数列{an}的各项排成如图所示的三角形形状.记A(m,n)为第m行从左起第n个数(m、n∈N*).有下列命题:
①{an}为等比数列且其公比q=±2;
②当n=2m(m>3)时,A(m,n)不存在;
a28=A(6,9),A(11,1)=2100
④假设m为大于5的常数,且A(m,1)=am1A(m,2)=am2A(m,k)=amk,其中amk为A(m,n)的最大值,从所有m1,m2,m3,…,mk中任取一个数,若取得的数恰好为奇数的概率为
m-12m-1
,则m必然为偶数.
其中你认为正确的所有命题的序号是
②③④
②③④

查看答案和解析>>


同步练习册答案