题目列表(包括答案和解析)
4.在光滑水平面上静止放置一长木板B,B的质量为M=2㎏同,B右端距竖直墙5m,现有一小物块 A,质
量为m=1㎏,以v0=6m/s的速度从B左端水平地滑上B。如图
所示。A、B间动摩擦因数为μ=0.4,B与墙壁碰撞时间极短,且
碰撞时无能量损失。取g=10m/s2。求:要使物块A最终不脱离B
木板,木板B的最短长度是多少?
3.
一平直木板C静止在光滑水平面上,今有两小物块A和B分别以2v0和v0的初速度沿同一直线从长木板C两端相向水平地滑上长木板。如图示。设物块A、B与长木板
C间的动摩擦因数为μ,A、B、C三者质量相等。
⑴若A、B两物块不发生碰撞,则由开始滑上C到A、B都静止在
C上为止,B通过的总路程多大?经历的时间多长?
⑵为使A、B两物块不发生碰撞,长木板C至少多长?
2.如图示,一质量为M长为l的长方形木块B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,现以地面为参照物,给A和B以大小相等、方向相反的初速度
(如图),使A开始向左运动,B开始向右运动,但最后A刚好没有滑离
B板。以地面为参照系。
⑴若已知A和B的初速度大小为v0,求它们最后速度的大小和方向;
⑵若初速度的大小未知,求小木块A向左运动到最远处(从地面上看)到出发点的距离。
1.
在光滑水平面上并排放两个相同的木板,长度均为L=1.00m,一质量
与木板相同的金属块,以v0=2.00m/s的初速度向右滑上木板A,金属
块与木板间动摩擦因数为μ=0.1,g取10m/s2。求两木板的最后速度。
15.(13分)如图3-12所示,水平传送带水平段长L=6m,两皮带轮直径均为D=0.2m,上面传送带距地面高为H=5m,与传送带等高的光滑水平台面上有一小物块以v0=5m/s的初速度滑上传送带,物块与传送带间的动摩擦因数μ=0.2,g取10m/s2。求:
(1)若传送带静止,物块滑到B端后做平抛运动的水平距离S。
当皮带轮匀速转动,角速度为ω,物体平抛运动的水平位移为S,以不同的角速度ω重复上述过程,得到一组对应的ω,S值。设皮带轮顺时针转动时ω>0,逆时针转动时ω<0,在图b给定的坐标平面上正确画出S-ω关系图线。(皮带不打滑)
![]()
版权所有
14.
(25分)如图所示,质量m1=1.0kg的物块随足够长的水平传送带一起匀速运动,传送带速度v带=3.0m/s,质量m2=4.0kg的物块在m1的右侧L=2.5m处无初速度放上传送带,两物块与传送带间的动摩擦因数均为0.10,碰后瞬间m1相对传送带的速度大小为2.0m/s,求碰撞后两物块间的最大距离.
解:以地面为参照物,由牛顿第二定律可得碰撞前m2向右的加速度
a=f2/m2=μm2g/m2=μg=1.0m/s2
碰撞前运动时间内m1与 m2位移关系s1= s2+L 即v带t=at2/2+L
代入数据解得: t=1.0s
t/=5.0s(不合题意舍去)
碰前m1随传送带匀速运动速度为v1= v带=3.0m/s,碰前瞬间m2的速度v2=at=1m/s,碰后瞬间m1的速度v1/= v1-2.0m/s=1.0m/s,碰撞瞬间由动量守恒定律有: m1 v1+ m2 v2= m1 v1/+ m2 v2/
代入数据解得: v2/=1.5m/s
碰后m1 和m2均作匀加速运动至与传送带相对静止,由于v2/> v1/,其加速度均为a,此过程中总有m2均大于m1 的速度,故二者都相对传送带静止时距离最大(设为sm).
m1相对滑动的时间为: t1=( v1-v1/)/a=2.0s
m2相对滑动的时间为: t2=( v1-v2/)/a=1.5s
m1相对滑动的时间内m2 先加速后匀速,则
sm= s2m-s1m= v2/ t2+a t22/2+ v2( t1-t2)-(v1/ t1+a t12/2)=0.875s
20.A)考点透视:在典型模型下研究物体的运动和功能问题
B)标准解法:
(1)第一颗子弹射入木块过程中动量守恒
(1)
解得:
(2)
木块向右作减速运动
加速度
(3)
木块速度减小为零所用时间为
(4)
解得
(5)
所以木块在被第二颗子弹击中前向右运动离A点最远时,速度为零,移动距离为
解得
。(6)
(2)在第二颗子弹射中木块前,木块再向左作加速运动,时间
(7)
速度增大为
(恰与传递带同速) (8)
向左移动的位移为
(9)
所以两颗子弹射中木块的时间间隔内,木块总位移
方向向右 (10)
第16颗子弹击中前,木块向右移动的位移为
(11)
第16颗子弹击中后,木块将会再向右先移动0.9m,总位移为0.9m+7.5=8.4m>8.3m木块将从B端落下。
所以木块在传送带上最多能被16颗子弹击中。
(3)第一颗子弹击穿木块过程中产生的热量为
![]()
木块向右减速运动过程中板对传送带的位移为
产生的热量为
木块向左加速运动过程中相对传送带的位移为
产生的热量为
第16颗子弹射入后木块滑行时间为
有
(17)
解得
(18)
木块与传送带的相对位移为
(19)
产生的热量为
(20)
全过程中产生的热量为![]()
解得Q=14155.5J (21)
C)思维发散:该题分析时对象选择整体隔离相结合。解题方法应是动力学和功能方法相结合。
13.(22分)如图所示,水平传送带AB长l=8.3m,质量为M=1kg的木块随传送带一起以
的速度向左匀速运动(传送带的传送速度恒定),木块与传送带间的动摩擦因数μ=0.5。当木块运动至最左端A点时,一颗质量为m=20g的子弹以
水平向右的速度正对射入木块并穿出,穿出速度u=50m/s,以后每隔1s就有一颗子弹射向木块,设子弹射穿木块的时间极短,且每次射入点各不相同,g取
。求:
1)在被第二颗子弹击中前,木块向右运动离A点的最大距离?
2)木块在传送带上最多能被多少颗子弹击中?
3)从第一颗子弹射中木块到木块最终离开传送带的过程中,子弹、木块和传送带这一系统所产生的热能是多少?(
g取
)
12.
(22分)一传送带装置示意如图,其中传送带经过 AB 区域时是水平的,经过 BC 区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过 CD 区域时是倾斜的,AB 和 CD 都与 BC 相切。现将大量的质量均为 m
的小货箱一个、个在 A
处放到传送带上,放置时初速为零,经传送带运送到 D
处 D
和 A
的高度差为 h。稳定工作时传送带速度不变,CD 段上各箱等距排列.相邻两箱的距离为 L。每个箱子在 A 处投放后,在到达 B 之前已经相对于传送带静止,且以后也不再滑动(忽略经 BC 段时的微小滑动)。已知在一段相当长的时间 T
内,共运送小货箱的数目为 N。这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦。求电动机的平均输出功率
。
解:以地面为参考系(下同),设传送带的运动速度为v0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s,所用时间为t,加速度为a,则对小箱有
①
②
在这段时间内,传送带运动的路程为
③
由以上可得
④
用f表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为
⑤
传送带克服小箱对它的摩擦力做功
⑥
两者之差就是克服摩擦力做功发出的热量
⑦
可见,在小箱加速运动过程中,小箱获得的动能与发热量相等。 T时间内,电动机输出的功为
⑧ 此功用于增加小箱的动能、势能以及克服摩擦力发热,即
⑨
已知相邻两小箱的距离为L,所以
⑩
联立⑦⑧⑨⑩,得
⑾
11.
(15分)如图所示,绷紧的传送带与水平面的夹角θ=30°,皮带在电动机的带动下,始终保持v0=2 m/s的速率运行.现把一质量为m=10 kg的工件(可看为质点)轻轻放在皮带的底端,经时间1.9 s,工件被传送到h=1.5 m的高处,取g=10 m/s2.求:
(1)工件与皮带间的动摩擦因数;
(2)电动机由于传送工件多消耗的电能.
解:由题图得,皮带长s=
=3 m
(1)工件速度达v0前,做匀加速运动的位移s1=
t1= ![]()
达v0后做匀速运动的位移s-s1=v0(t-t1)
解出加速运动时间 t1=0.8 s
加速运动位移 s1=0.8 m
所以加速度a=
=2.5 m/s2 (5分)
工件受的支持力N=mgcosθ
从牛顿第二定律,有μN-mgsinθ=ma
解出动摩擦因数μ=
(4分)
(2)在时间t1内,皮带运动位移s皮=v0t=1.6 m
在时间t1内,工件相对皮带位移 s相=s皮-s1=0.8 m
在时间t1内,摩擦发热 Q=μN·s相=60 J
工件获得的动能 Ek=
mv02=20 J
工件增加的势能Ep=mgh=150 J
电动机多消耗的电能W =Q+Ek十Ep=230 J (6分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com