题目列表(包括答案和解析)

 0  46386  46394  46400  46404  46410  46412  46416  46422  46424  46430  46436  46440  46442  46446  46452  46454  46460  46464  46466  46470  46472  46476  46478  46480  46481  46482  46484  46485  46486  46488  46490  46494  46496  46500  46502  46506  46512  46514  46520  46524  46526  46530  46536  46542  46544  46550  46554  46556  46562  46566  46572  46580  447348 

5、如图5,已知抛物线的顶点坐标为E(1,0),与轴的交点坐标为(0,1).

(1)求该抛物线的函数关系式.

(2)A、B是轴上两个动点,且A、B间的距离为AB=4,A在B的左边,过A作AD⊥轴交抛物线于D,过B作BC⊥轴交抛物线于C. 设A点的坐标为(,0),四边形ABCD的面积为S.

① 求S与之间的函数关系式.

② 求四边形ABCD的最小面积,此时四边形ABCD是什么四边形?

③ 当四边形ABCD面积最小时,在对角线BD上是否存在这样的点P,使得△PAE的周长最小,若存在,请求出点P的坐标及这时△PAE的周长;若不存在,说明理由.

 

6)如图6,抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2。

(1)求A、B 两点的坐标及直线AC的函数表达式;

(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;

(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由。

 

试题详情

4、某公司推出了一种高效环保型除草剂,年初上市后,公司经历了从亏损到盈利的过程. 图4的二次函数图象(部分)刻车了该公司年初以来累积利润S(万元)与时间(月)之间的关系(即前个月的利润总和S与之间的关系).

根据图象提供信息,解答下列问题:

(1)公司从第几个月末开始扭亏为盈;

(2)累积利润S与时间之间的函数关系式;

(3)求截止到几月末公司累积利润可达30万元;

(4)求第8个月公司所获利是多少元?

试题详情

3、如图3,已知抛物线经过O(0,0),A(4,0),B(3,)三点,连结AB,过点B作BC∥轴交该抛物线于点C.

(1) 求这条抛物线的函数关系式.

(2) 两个动点P、Q分别从O、A两点同时出发,以每秒1个单位长度的速度运动. 其中,点P沿着线段0A向A点运动,点Q沿着折线A→B→C的路线向C点运动. 设这两个动点运动的时间为(秒) (0<<4),△PQA的面积记为S.

 ① 求S与的函数关系式;

   ② 当为何值时,S有最大值,最大值是多少?并指出此时△PQA的形状;

③ 是否存在这样的值,使得△PQA是直角三角形?若存在,请直接写出此时P、Q两点的坐标;若不存在,请说明理由.

试题详情

2、如图2,已知二次函数的图像经过点A和  

B

(1)求该二次函数的表达式;

(2)写出该抛物线的对称轴及顶点坐标;

(3)点P(mm)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q x轴的距离

试题详情

1、如图1,已知二次函数图象的顶点坐标为C(1,0),直线 与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴上.

  (1)求的值及这个二次函数的关系式;

(2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求之间的函数关系式,并写出自变量的取值范围;

(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.

 

试题详情

24、已知:在平面直角坐标系xOy中,一次函数的图象与x轴交于点A,抛物线经过O、A两点。

(1)试用含a的代数式表示b;

(2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分。若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD相切,求⊙D半径的长及抛物线的解析式;

(3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得?若存在,求出点P的坐标;若不存在,请说明理由。

试题详情

23、如下图,等边△ABC以2m/s的速度沿直线l向菱形DCEF移动,直到AB与CD重合,其中∠DCF=60°,设x s时,三角形与菱形重叠部分的面积为y m2

  (1)写出y与x的关系表达式。

  (2)当x=0.5,1时,y分别是多少。

  (3)当重叠部分的面积是菱形面积一半时,三角形移动了多长时间?

试题详情

22、已知:正方形的边长为l。

(1)如图①,可以算出一个正方形的对角线的长为,求两个正方形并排拼成的矩形的对角线长,并猜想出n个正方形并排拼成的矩形的对角线;

(2)根据图②,求证:

(3)由图③,在下列所给的三个结论中,选出一个正确的结论加以证明:①;②;③

试题详情

21、如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,顶点C在y轴的负半轴上,tan∠ABC=,点P在线段OC上,且PO、PC的长(PO<PC)是方程x2-12x+27=0的两根.

  (1)求P点坐标;

  (2)求AP的长;

(3)在x轴上是否存在点Q,使以点A、C、P、Q为顶点的四边形是梯形?若存在,请直接写出直线PQ的解析式;若不存在,请说明理由.

试题详情

20、已知:如图1,在△ABC中 ,AB = AC =5 ,AD为底边BC上的高,且AD = 3.将△ACD沿箭头所示的方向平移,得到△A'CD'(如图2),A'D' 交AB于E,A'C分别交AB、AD 于G、F,以 D'D 为直径作⊙O,设BD'的长为 x ,⊙O的面积为 y .

(1)求 y与x 的函数关系式及自变量x的取值范围(不考虑端点);

(2)当BD'的长为多少时,⊙O的面积与△ABD的面积相等?(π取3,结果精确到 0.1)

(3)连结EF,求EF与⊙O 相切时 x 的值.

 

试题详情


同步练习册答案