题目列表(包括答案和解析)

 0  46399  46407  46413  46417  46423  46425  46429  46435  46437  46443  46449  46453  46455  46459  46465  46467  46473  46477  46479  46483  46485  46489  46491  46493  46494  46495  46497  46498  46499  46501  46503  46507  46509  46513  46515  46519  46525  46527  46533  46537  46539  46543  46549  46555  46557  46563  46567  46569  46575  46579  46585  46593  447348 

2.如图1,直线被直线所截,若

     

试题详情

1.写出一个小于的数:     

试题详情

24、已知:在平面直角坐标系xOy中,一次函数的图象与x轴交于点A,抛物线经过O、A两点。

(1)试用含a的代数式表示b;

(2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分。若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD相切,求⊙D半径的长及抛物线的解析式;

(3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得?若存在,求出点P的坐标;若不存在,请说明理由。

试题详情

23、如下图,等边△ABC以2m/s的速度沿直线l向菱形DCEF移动,直到AB与CD重合,其中∠DCF=60°,设x s时,三角形与菱形重叠部分的面积为y m2

  (1)写出y与x的关系表达式。

  (2)当x=0.5,1时,y分别是多少。

  (3)当重叠部分的面积是菱形面积一半时,三角形移动了多长时间?

试题详情

22、已知:正方形的边长为l。

(1)如图①,可以算出一个正方形的对角线的长为,求两个正方形并排拼成的矩形的对角线长,并猜想出n个正方形并排拼成的矩形的对角线;

(2)根据图②,求证:

(3)由图③,在下列所给的三个结论中,选出一个正确的结论加以证明:①;②;③

试题详情

21、如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,顶点C在y轴的负半轴上,tan∠ABC=,点P在线段OC上,且PO、PC的长(PO<PC)是方程x2-12x+27=0的两根.

 (1)求P点坐标;

 (2)求AP的长;

(3)在x轴上是否存在点Q,使以点A、C、P、Q为顶点的四边形是梯形?若存在,请直接写出直线PQ的解析式;若不存在,请说明理由.

试题详情

20、已知:如图1,在△ABC中 ,AB = AC =5 ,AD为底边BC上的高,且AD = 3.将△ACD沿箭头所示的方向平移,得到△A'CD'(如图2),A'D' 交AB于E,A'C分别交AB、AD 于G、F,以 D'D 为直径作⊙O,设BD'的长为 x ,⊙O的面积为 y .

(1)求 y与x 的函数关系式及自变量x的取值范围(不考虑端点);

(2)当BD'的长为多少时,⊙O的面积与△ABD的面积相等?(π取3,结果精确到 0.1)

(3)连结EF,求EF与⊙O 相切时 x 的值.

 

试题详情

19、如图,已知正三角形ABC的边长AB是480毫米.一质点D从点B出发,沿BA方向,以每秒钟10毫米的速度向点A运动.

⑴ 建立合适的直角坐标系,用运动时间t(秒)表示点D的坐标;

⑵ 过点D在三角形ABC的内部作一个矩形DEFG,其中EF在BC边上,G在AC边上.在图中找出点D,使矩形DEFG是正方形(要求所表达的方式能体现出找点D的过程);

⑶ 过点D、B、C作平行四边形,当t为何值时,由点C、B、D、F组成的平行四边形的面积等于三角形ADC的面积,并求此时点F的坐标.

 

试题详情

18、某外语学校在圣诞节要举行汇报演出,需要准备一些圣诞帽,为了培养学生的动手能力,学校决定自己制作这些圣诞帽.如果圣诞帽(圆锥形状)的规格是母线长42厘米,底面直径为16厘米.

⑴ 求圣诞帽的侧面展开图(扇形)的圆心角的度数(精确到度);

⑵ 已知A种规格的纸片能做3个圣诞帽,B种规格的纸片能做4个圣诞帽,汇报演出需要26个圣诞帽,写出A种规格的纸片y张与B种规格的纸片x张之间的函数关系式及其x的最大值与最小值;若自己制作时,A、B两种规格的纸片各买多少张时,才不会浪费纸张?

⑶ 现有一张边长为79厘米的正方形纸片,它最多能制作几个这种规格的圣诞帽(圣诞帽的粘接处忽略不计).请在比例尺为1:15的正方形纸片上画出圣诞帽的侧面展开图的裁剪草图,并利用所学的数学知识说明其可行性.

 

试题详情

17、在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10. 点E在下底边BC上,点F在腰AB上.

(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积;

(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;

(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分?若存在,求出此时BE的长;若不存在,请说明理由.

试题详情


同步练习册答案