题目列表(包括答案和解析)
2.掌握均值不等式在不等式证明中的应用。
9.直线
过点
,且分别与
轴,
轴的正半轴交于
为坐标原点:
⑴当
的面积最小时,求
的方程;
⑵当
取最小时,求
的方程。
8.一段长为L的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长,宽各为多少时,菜园面积最大,最大面积是多少?
7.⑴已知
,求函数
的最小值,并求
取最小值时的
的值;
⑵已知
,求函数
的最大值,并求
取最大值时的
的值。
6.填空题:
⑴若
且
,则![]()
;
⑵若
且
则
;
⑶若
,则
的最小值是
;
⑷函数
,当
时,
有最
值是 。
5.在下列函数中,最小值是2的是………………………………………………………………( )
A.
B.
C.
D.
4.已知
且
,则
有……………………………………………………( )
A.最大值64 B.最小值
C. 最小值
D.
最小值64
3.已知
,且
,则
的最小值是…………………………( )
A.6 B.7 C.8 D.9
2.已知
,且
,则
的最大值是………………………………( )
A.4 B.2
C.1
D.
9
1.设
,且
,则
的最小值是…………………………………………( )
A.6
B.
C.
D.![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com